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FOREWORD

"This report, "A Method for Predicting Three-Degree-of-kreedom Store

•.irat~on Tra3ectories at Speeds up to the Critical Speed," describes

1....•,,ined theoretical-experimental program directed toward developing a

cumputer program for predicting the trajectory of an external store dropped

:iaom an aircraft of the fighter-bomber type at speeds up to the critical

s&eed. The work was carried out by Nielsen Engineering & Research, Inc.,

.0 Mlaude Avenue, Mountain View, California 94040, under Contract No.

F336i5-69-C-1337. The contract was initiated under Project 8219, Task

6E1902, of the Air Force Flight Dynamics Laboratory. The Air Force

Project Engineer on the contract was Mr. Jerry E. Jenkins, AFFDL/FGC.

The report number assigned by Nielsen Engineering & Research, Inc. is

N,ýAR TR 26.

The authors wish to thank Mr. Jenkins for his assistance in solving

some of th,- technical and administrative problems which arose during the

course of the investigation. Also, they would like to thank Mr. John C.

Marshall and Mr. Willard E. Summers of the 4T Pro3ects Branch, Propulsion

'vind-Tuinnel Facility, Ai'nold Engineering Development Center, for the timely

perfori•ance of the experimental test program.

Tl1, work documented in this report was started on December 1, 1968 and

w:! effectively concluded with the submission of th:Ls report. The report

was released by the authors in January 1971.

This technical report has been reviewed and is approved.

E. H. FLINN
Control Criteria Branch
Flight Control Division
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AB-STRACT

This report is the final technicaL repoxt which describes a combined

theoretical-experimental program which has been conducted with the aim of

developing a computer program to predict three-degree-of-freedom trajec-

tories of stores when dropped from fighter-bomber type aircraft at speeds

up to the critical speed. Both single store and multiple store installa-

tions are treated. The report first describes the mathematical mocels

used to represent the various aircraft components. Then the calculation

of the flow field, accounting for primary interference effects, using

these models is described followed by the method of calculating the

normal force and pitching moment from this flow field. A method of

accounting for additional interference between the wing, pylon, and

store is next presented. Comparisons between the calculated results and

available experimental data and aata obta-ned during the present program

are included for all aspects of the analysis. Good overall agreement is

obtained. A comparison between one sample c1culated trajector\ e-- an

experimental trajectory is presented. The agreeýment is quit(- gouý.

[ riii



TABLE OF CONTENTS

ecinPage
Section No.

1. INTRODUCTION 1

2. GENERAL METHOD OF APPROACH 2

3. COMPRESSIBILITY CORRECTION 4

4. MATHEMATICAL MODELS FOR DETERMINING FLOW FIELD 8

4.1 Axisymmetric Bodies at Zero Degrees Angle of Attack 9

4.1.1 Fundamental equations 9
4.1.2 Conditions used to obtain source strengths 10
4.1.3 Calculative examples 12

4..2 Wing Thickness at Zero Degrees Angle of Attack 13

4.2.1 Fuindamental equations 13
4.2.2 C,nditions used to obtain source strengths 14
4.2.3 Calculative example 15
4.2.4 Calculation of the velocity field about wings

with sweep and taper 15

4.3 Wing Angle of Attack; Lifting-Surface Theory 18

4.3.1 Descriptior. of method 18
4.3.2 Effect of the number of vortices on the calculated

flow field 19

5. CALCULATION OF FLOW FIELD 20

5.1 interference Effects 20
5. 2 Method of Calculation f 23

3.2.1 Sinqle store under the wing 23
5.2.2 single store under fuselage centerline 23
5.2.3 Multiple store under the wing or fuselage 24

3.3 Compari'son of Calculated and Experimental Flow Fields 24

5.3.1 Comparison with data from NACA RM 156J19 (reL. 5) 24
5.3.2 Comparison with daca ftom NEAR TR . (ref. 1) 2V

6. PRIMARY INTERFER:.NCE FORCE AND MOMENT 31

6.1 Buoyancy Force and Moment 34
6.2 Angle of Attack Force and Moment 36

6.2.1 Slender-body force and moment 3",
6.2.2 Viscous crossflow force and moment 40

6.3 Empcnnage Force and Moment 41

V



Page
Section No.

7. ADDITIONAL INTERFERENCE FORCE AND MOAENT 43

7.1 Axes and Conventions 45
7.2 Formulation of the Interference Problem 46
7.3 Store Normal-Fo'ce Distribution 48
7.4 Boundary Condition for Store Under P.lon of Wing-Body

Combination 51
7.5 Application of the Method to Conical Configurations 54

7.5.1 Boundary conditions 54
7.5.2 Calculative example 59

8. COMPARISON OF CALCULATED LOAD DISTRIBUTION, FORCE, AND
MOMENT WITH EXPERIME1T 65

8.1 Single Store Under Wing of Wing-Fuselage Combination 66
8.2 Single Store Under Wing of Wing-Fuselage-Pylon

Combination 68
8.3 TER Stores Under Wing of Wing-Fuselage-Pylon-Rack

Combination 73

9. EXPERIMENTALLY DETERMINED MER INTERFERENCE EFFECTS 74

10. STORE TRAJECTORIES 77

10.1 Equations of Motion 78
10.2 Description of Computer Program 83
10.3 Sample Irajectory 84

11. CONCLUDING REMARKS 85

TABLE I 88

FIGURES 1 THROUGH 46

APPENDIX I - INTEGRATION OF THE LOADING EQUATION 163

APPENDIX II - CALCULATION OF VORTEX STRENGTHS 173

REFERENCES 185

DD FORM 1473

vi



LIST OF ILLUSTRATIONS

Page
Figure No.

1.- Coordinate system for axisymmetric body. 89

2.- Wing-fuselage combination used in reference 1. 90

3.- Single store in the presence of the wing-fuselage combination
of reference 1. (a) Store location. 91

3.- Concluded. (b) Store details. 92

4.- Comparison between actual ynd calculated shapes for two
axisymmetric bodies. (Note differences in x* and r*
scales.) (a) Fuselage in NACA RM L56J19 (ref. 5).
(b) Cylinder with ellipsoidal ends. 93

5.- Coordinate system for two-dimensional wing. 94

6.- Comparison between actual and calculated shapes for NACA
65A006 airfoil. (Note difference in z/c and x/c scales.) D5

7.- Swept-wing configuration and flow velocities. 96

8.- Swept and unswept constant chord wings. 97

9.- Dimensions of winr,-body configuration of references 5 and 6. 98

10.- Definitions of local angle of attack and sidewash angle.
(a) Local angle of attack. (b) Sidewash angle.
(c) Composite velocity diagram,, 99

11.- Perturbation velocities due to angle of attack 10 percent of
local chord beneath wing of example wing-body combination.
(a) Upwash perturbation velocity. 100

11.- Concluded. (b) Sidewash perturbation vel.city. 101

12.- Perturbation velocities due to angle of attack 5 percent of
the local chord beneath wing of example wing-body combination.
(a) Upwash perturbation velocity. 102

12.- Concluded. (b) Sidewash perturbation velocity. 103

13.- Comparison between calculated and experimental local angle
of attnck and sidewash angle under the inid-semispan of
wing-body configuration of figure 9; aw = -0.20. 104

13.- Concluded. (b) Sidewash angle. 103

14.- Comparison between calculated and experimental local angle.
of attack and sidewash angle under wing-body configuration
of figure 9 at the mid-semispan 17 percent of the local
chord below the wing for various angles of attack.
(a) Local angle of attack with aw = -0.2o and -4.30. 106

Vii



LIST OF ILLUSTRATIONS (cont.)

Page
Figure No.

14.- Continued. (b) Local angle of attack with a = 6.10
and 12.30. W 107

14.- Concluded. (c) Sidewash angle. 108

15.- Comparison between calculated and experimental local angle
of attack and sidewash angle under wing-body configuration
of figure 9 at the mid-semispan at an angle of attack of
6.10. (a) Local angle of attack. 109

15.- Concluded. (b) Sidewash angle. 110

16.- Comparison between calculated and experimental local angle
of attack and sidewash angle under wing-body configuration
of figure 9 at 17 percent of the local chord below the
wing at an angle of attack of 6.10. (a) Local angle of
attack. i1

16.- Concluded. (b) Sidewash angle. 112

17.- Comparison between calculated and experimental local angle
of attack under the fuselage centerline of winig-body
configuration of figure 9 for various distances below 'he
fuselage. (a) aw = -0.20. 113

17.- Concluded. (b) aw = 6."1° 114

18.- Comparison between calculated and experimental velocity field
at the 1/3 semispan of the left wing panel of wing-body
configuration of figure 1; Mw = 0.25, z/c = -0.30.
(a) ap = 00. 115

18.- Concluded. (b) ap = 60. 116

19.- Comparison between calculated and experimental velocity
field at the 1/3 semispan of the left wing panel of wing-
body configuration of figure 1; Mx = 0.70, z/c = -0.30.
(a)a p = 0 . 117

19.- Concluded. (b) ap = 60. 118

20.- TER grouping of stores in the presence of the wing-fuselage
combination of reference 1. 119

21 oarison between calculated and experimental velocity
crements due to addition of two shoulder stores to TER

rack; M. = 0.25, y/s = -0.333, z/c = -0.40. (a) ap = 0 120

21.- Concluded. (b) ap 60. 121

22.- Coordinate system fixed in ejected store. 122

viii



LIST OF ILLUSTRATIONS (cont.)

PagE

Fiqure No

23.- Axis systems used in mutual interference analysis. 123

24.- Effect of vortex spacing on calculated values of K for
conical wing-store-pylon configuration. a 124

25.- Variation of K. with geometric parameters of conical
wing-store-pylon configuration. 125

26.- Effect of vortex spacing on calculated values of K for
conical wing-store-pylon configuration. 126

27.- Variation of normal force due to sidewash with geometric
parameters of conical wing-store-pylon configuration. 127

28.- Primary interference normal force distribution on a single
store below the left wing panel of a wing-fuselage combina-
tion; M = 0.25, y/s = -0.333 z/c = -0.30. (a) ap = 00

aw = i.'5°. , 128

28.- Concluded. (b) ap 60, aw = 6.750. 129

29.- Effect of additional interference on normal-force distribu-
tion on a single store below the left wing panel of a
wing-fuselage combination; M,, = 0.25, y/s = -0.333,
z/c = -0.30. (a) ap = 00, aw = 1.250" 133

29.- Concluded. (b) ap = 60, aw = 6.750. 131.

30.- Primary interference normal-force distribution on a single
store below the left wing panel of a wing-fuselage combina-
tion; M = 0.70, y/s = -0.333, z/c = -0.30. (a) -p 00,03
aw = 0."s6o. !32

30.- Concluded. (b) ap = 60, aw = 6.790. 133

31.- Primary interference normal force and' pitching moment on a
single store below the left wing panel of a wing-fuselage
combination; y/s = -0.333, z/c = -0.30. (a) Mo = 0.25. 134

31.- Concluded. (b) M,0 = 0.70. ]3:

32.- Details of pylons used in experimental investigation or
reference 1. 13f;

33.- Incremental loading on single store at 1/3 semispan location
caused by addition of pylon to wing-fuselage combination;
Moo = 0.25, z/c = -0.30. (a) ap = 00.

33.- Concluded. (b) ap 6° 13,

34.- Swept-wing model of NACA RM L54B18 (ref. 15).

ix



LIST OF ILLUSTRATIONS (cont.)

Page
Figure No.

35.- Distribution of the various components of normal force on
a store in a nonuniform flow field. (a) aw = as = 00. 140

35.- Continued. (b) aw = as = 20. 141
35.- Continued. (c) aw = c 40. 142

35.- Concluded. (d) a w = 8o. 143

$ 36.- Normal force and pitching moment on store without tail fins.
(a) Buoyancy component. 144

36.- Continued. (b) Angle of attack component. 145

36.- Concluded. (c) Total force and moment. 146

37.- Total normal force and pitching moment on store with tail fir's. 147

38.- Incremental loading on bottom store on TER rack at 1/3 semispan
caused by addition of two side stores; M. = 0.25, z/c - -0.40.
(a) a = 00. 148

S 0
38.- Concluded. (b) ap = 6°. 142

39.- Incremental loading on store no. 2 on TER cack at 1/3 semispan
caused by addition of store no. 3; MV = 0.25, z/c = -0,333.
(a) ap = 00. 150

39.- Concluded. (b) p = 6. 151

40.- MER grouping of stores in the presence of the wing-fuselage
combination of reference 1. (a) Store locations. 152

40.- Concluded. (b) Store details. 153

41.- MER rack details. 154

42.- Incremental interference force and moment on finless MER
stores; M•, = 0.40, z = -3.80 inches. (a) Store number 1. 155

42.- Concluded. (b) Store number 4. 156

43.- Incremental interference force and moment on finned MER stores;

M• = 0.40, z = -3.80 inches. (a) Store number 1. 157

43.- Concluded. (b) Store number 4. 158

44.- Coordinate systems and angle definitions used in trajectory,
calculations. 159

45.- T'crces acting on store. 160

x



+I
t3

I1

LIST OF ILLUSTRATIONS (conc.,

Page

Figure No.

46.- Sample trajectory calculation. (a) Pitch angle. 161

46.- Concluded. (b) Vertical location of store center of
gravity. 162

Sx



LIST OF SYMBOLS

a local body radius

3, body radius at the axial location of the empennage centroid

a max maximum body radius

b total wing span

C local wing chord

section drag coefficient of a circular cylinder normal to
c air stream, taken equal to 1.2

C D, zero-lift drag coefficient, zero-lift drag/q SSR

C pitching-moment coefficient, pitching moment/qS RR

C1  pitching-moment coefficient excluding buoyancy contribution

Cn yawing-moment coefficient, yawing moment/qs 5SR R

C N normal-force coefficient, normal force/q.sSR

C N, normal-force coefficient excluding buoyancy component

C N normal-force coefficient of store due to primary interference
S

C normal-orce coefficient of store alone due to angle of attack

C N normal-force coefficient of store in presence of wing and
,spw(CZ) pylon due to angle of attack

Cp Ppressure coefficient, (p - p. )/q.

Cpi pressure coefficient of lower surface of store

C ppressure coefficient on upper surface of store

Cy ZC PC Pl- C l

C y side-force coefficient, side force/q, SR

d -,,a:, ýi.n store dinmeter

xii



store alone drag at zero lift

F resultant force in crossflow plane, Y + iN

Fý, F sum of forces acting on store in ý and T, directions,
TI respectively

9 ggravitational acceleration

h distance of store center beneath wing

h distance from store center to top of pylonp

i p(k) local incidence angle of pylon at kth control point

is store incidence angle relative to fuselage axis

i w wing incidence angle relative to fuselage axis

k radius of gyration of store

KB, KE interference lift ratios defined by equations (69) and (70)

K interference coefficient denoting change in store-alone
normal force associated with W component of interference
field, equation (119)

K• interference coefficient denoting change in store-alone
normal force associated with V component of interference
field, equation (121)

£ pylon length

ff fuselage length

[R reference length; taken equal to store maximum diameter, d,everywhere except for section 4 and for Cm of figures 36

k and 37, where it is taken equal to store length, is

store length

m number of control points on pylon

m store masss

SM. free-stream Mach number

sum of pitching moments acting on store taken about store
S° center of gravity, positive nose up

xiil



F --. t A 4

n number of control points on left panel, or direction normal
to body surface

N normal force
Ns normal force acting on store due to primary interference

NF normal force acting on store due to additional interference

vortex system

p static pressure or number of control points on right panel

Pf static pressure on lower surface of store

Pu static pressure on upper surface of store

q dynamic pressure

Qk strength of kth point source

Qk/4rVfV for bodies, Qk/ 27rVcV for airfoils

r radial distance in y-z plane

r*

r. radial distance to ith external vortex

s wing semispan; in section 7, distance from pylon to right
wing tip

s E empennage semispan

S store cross sectional area, raa2

Sn area of store normal to sidewash velocity V

S reference area taken equal to body frontal area, 7raa2SRma

t time or win9 thickness; also, in section 7, distance from
pylon to left wing tip

u'v,w perturbation velocities in xs, Ys) zs directions,
respectively

u,v,w perturbation velocities in x, y, z directions, respectively
(fig. 23)

u*,pv*,w* u/V" ,v/V, w/V. xiv



ui,vi,wi values of u, v, w associated with vortex ri including
its image system

perturbation velocity in direction normal to line of

constant percent thickness of swept wing

UsVsWs values of u, v, w due to store alone

U rp vr, w r sums of ui, vi, wi over all external vortices

U, V, W total velocities in xs9 Ys, Zs directions, respectively

U, V, W total velocities in x, y, z directions, respectively

U IV*,*w* U/v., V/Vc, W/V. 0

Us),VsWs total velocities in x y , z directions, respectively,
as seen from a point gn tfe store

U*,V *,IW*s U/Vs Vs/V.s, Ws/W"s

V VBI wB values of v and w for body alone of conical wing-body-I pylon combination

V p(S) value of v on pylon due to store alone

v Pk)value of v to be cancelled by vortex system at ktit
vp~k)control point on pylon

V, crossflow velocity, V 7

c c

SVhor, V vert horizontal and vertical components of store velocity,
V 0 ivr respectively

V radial velocity in ys-Zs planer

V* V/V•r r

V store ejection velocity
0

V value of V associated with •3D at kth pylon control
S V3 D(k) point

V" aircraft free-stream velocity

V.,s ejected store free-stream velocity

xv



th
w velocity w to be cancelled by vortex system at g

WL(g) control point on left panel

.th
W velocity w to be cancelled by vortex system at J

control point on right panel

Ww(s) value of w on wing due to store alone

W(ý) complex potential for flow around store in planes parallel
to ys-Zs plane

W (a) complex potential for store alone perturbation velocities
s

WF(a) complex potential associated with N external vortices and
their images including the center vortex

xOyz Cartesian coordinate system in compressible space

xy',z' Cartesian coordinate system in incompressible space; related
to x,y,z by equation (2)

xyz Cartesiai. coordinate system with origin at store nose(see fig. 23)

x* x/eR for bodies, x/c for airfoils

xk x-location of kth point source

x* Xk/AR for bodies, Xk/C for airfoils

XsYspZ s Cartesian coordinate system with origin at nose of ejected
store (see fig. 22)

Xs'o separation location on store body

v side force

Ycf side force on store alone due to viscous crossflow

Z* Z/c

Zc(x) wing camber distribution in compressible space

Z th(x) wing thickness distribution in compressible space measured
from the camberline, positive upwards

, angle of attack

aBigle of attack of fuselage



( c combined angle of attack at- the axial location of the tail
Sc centroid; that is, angle between local velocity vector and

store axis

.A local angle of attack, tan-1 (W/U)

parent aircraft angle of attack; that is, angle betweenwind-tunnel longitudinal axis and fuselage axis

as angle of attack of store

Cew angle of attack of wing

13 V1- M2 or angle of sideslip
Cth

1 •jbody or airfoil slope at the jth point on the surface

YB flight path angle of fuselage

I's flight path angle of store

i ri strength of vortex at 0 = oi

store titch angle, positive nose up

store pitching rate, d-?/dt

"store pitching acceleration, d2 &/dt2

sE/aE or expression given by equation (91)

sweep angle or expression defined by equation (113)

coordinates of store center of gravity relative to fus2.a~c
nose, see figure 44

velocities of store center of gravity relative to fuselag

accelerations of store center of gravity relative to fuseag e

1) mass density

sidewash angle, tan 1(V/U), or complex variable in ys-zn
plane, -= y s + iz s

Oi location of Ii vortex

potential function in compressible space

ýc complete potential for airplane including store ant- pylon

under consideration

xvii



77 .. . .T" ..

$s perturbation potential of store alone

SBpart of potential ¢ due to presence of store and pylon

•jixx 2/x

SB I 0 yy )20/ay2

03D complete potential for aircraft except for store and pylon
under consideration

stream function or algebraic expression given by equation (90)

lp/2V• for bodies, '/cV, for airfoils

Subscripts

ATT in the attached position

B body

BY due to buoyancy

CF due to viscous crossflow

two-dimensional (airfoil)

E of the empennage

LE leading edge

s ejected store coordinate system

scg store center of gravity

SB dw' to slender-body theory

t,cen t~il centroid

th tnickness

T of the tail alone (two tail panels joined together)

TE trailinq edge

TOT total

v1 7ortex lattice

xviii



o initial conditions

free-stream conditions

L due to angle of attack

Superscripts

* nondimensional quantities

A the value of the quantity at the corresponding point in the
incompressible space

xix



A METHOD FORF PREDICTING THREE-DEGREE-OF-
FREEDOM STORE SEPARATION TRAJECTORIES

AT SPEEDS UP TO THE CRITICAL SPEED

1. INTRODUCTION

This report is the final technical report describing a combined

theoretical-experimental program which has been carried out with the

objective of developing a computer program which will predict the

trajectories of external stores dropped from aircraft of the fighter-

bomber type. The speed range is limited to speeds below the critical.

The stores ca. be placed either under the fuselage or the wing and may
be single stores on pylons or groups of stores on racks. Only store

motion in the vertical, or pitch, plane is considered.

The three principal tasks in the prediction of a store trajectory

are: first, the determination of the nonuniform flow field in the

neighborhood of the ejected stores; second, the determination of the
forces and moments on the store in this flow field; and third, the

integration of the equations of motion to determine the store trajec-

tory. The first two tasks are the more difficult because they are

complicated by interference effects.

The general methodology adopted in the present work is that the
ovet±rall difficulty of the interference problem and the probable length

of the computer program make it desirable to use the simplest possible

methods consistent with accuracy. Thus, even though more precise Tethods

may be known for handling some of the aerodynamic problems, simplified

methods are used if they are deemed sufficiently accurate for the task

at hand.

At each stage of development of the prediction method, comparisons

will be made with experimental data to assess the accuracy of the method.

It has been found that there is a general lack of data on external stores

suitable for a critical check of a theory for predicting forces and

moments on a store in a nonuniform flow field. Consequently, an experi-

mental program has been conducted as part of the present investigation

with the aim of obtaining such data. Data have been obtained for single

stores and for triple ejection rack (TER) and multiple ejection rack (MER)

groupings. A coordinated set of data has been obtained giving the flow-

field velocity components where the store is to be located, forces and



moments on the store in this location, and in most cases, pressure distri-

butions and thus load distributions on the store in this location. In
order to isolate effects due to adding a component to the parent aircraft,

the parent aircraft has been built up component by component and the tests

repeated for each parent aircraft configuration.

'The data obtained during this program are not presented in this
report but are tabulated in reference 1. The complete test program is

described in that reference. Representative data from this program are

also presented in references 2 and 3.

2. GENERAL METHOD OF APPROACH

The accurate calculation of store separation trajectories requires
that the forces and moments acting on the store be known at every point

in the trajectory. If these forces and moments are to be calculated by
theoretical means, then the velocity field in the vicinity of th. ejected

store relative to that store must first be determined. This field
depends not only on the store free-stream velocity, but also the pertur-

bation velocities induced by all of the aircraft components and any

stores still attached to the aircraft. The determination of this velocity

field requires that models for the aircraft components be developed and
that the important interferences between components be accounted for. In

the basic method presented in this report, models are developed for the

fuselage, wing, and stores and the following flow-field components are
accounted for in the primary interference method:

(i) Fuselage volume

(2) Fuselage angle of attack

(3) Wing thickness

(4) Wing angle of attack, camber, and twist

(5) Wing-fuselace interference

(6) Store volume
(7) Wing-store interference

Pylon and rack effects are not included in the primary interference.

Fuselage volume is taken into account by approximating the shape by
an axisymmetric body and representing this body by a series of point
sources placed on the body axis. The volumes of all of the stores

present are accounted for in the same manner. Fuselage angle of attack
is taken into account as a simple Beskin upwash. Mutual interference
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between wing, pylon, and store are accounted for in an additional inter-

ference method.

Wing thickness is accounted for by representing the airfoil section

immediately above the store being ejected by a series of two-dimensional

point sources. Simple sweep theory is then used to modify the velocities

induced by this source distribution to account for wing sweep and taper.

The remaining three items: wing angle of attack, twist, and camber;

wing-fuselage interference; and wing-store interference are accounted for

in the following way. The wing is represented by a vortex lattice and

the velocities induced by the fuselage and stores at the wing are computed

and treated as an induced wing camber which is added to any geometric

twist and camber. The wing model then accounts for this induced camber

and the velocities induced by the wing on the store to be ejected are

computed with the store in its initial position. After the store is

ejected and moves relative to the wing, the velocities induced by it at
the wing will change. To account precisely for these changing velocities
would require calculating a new wing model at each point in the trajec-

tory and would greatly increase computation time. Since the initial
motion of the store is the most important, it is felt that any change in

the wing model due to movement of the store is a second-order effect,

and, hence, it is not accounted for at the present time. This assumption

can be relaxed if proven necessary.

The wing also changes the flow field in the vicinity of the fuselage

and stores in such a way as to cause them to operate in a nonuniform

flow field. Since the basic fuselage and store models are derived for an

assumed uniform flow field, the existence of the nonuniform flow causes
additional changes in the wing loading not accounted for by the inter-

ference effects discussed thus far. At the present time, the modification

of the wing loading due to this effect is not included in the primary

interference but is included in the additional interference.

The fact that one store can induce velocities in the vicinity of

another store such as to cause that store to be in a nonuniform flow field

is neglected for single stores, but included for multiple stores. For

single stores, each mounted on its own pylon, the distance between stores

is such that this effect is felt to be a second-order effect. For stores

grouped together, as on TER or MER racks, experiments show that this •ifect

is important. For the cases tested, the store volume effects are dominant
and have been included in the theory.
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The general method being described in this report allows the trajec-
tory of a store ejected from under the fuselage or the wing, either as a

single store or one of a cluster on a TER or MER rack, to be calculated.

In the preceding discussion, the method of accounting for the pylon or
rack was not described. in order to investigate the importance of mutual

interference between the wing, pylon, and store, an interference model

has been developed for the special case of a single store mounted on a

pylon beneath the wing. This interference calculation has not been carried
out for MER and TER configurations, but the basic approach is applicable

to any of the store locations and groupings of interest. The magnitude

of the additional interference for three-degrees-of-freedom as calculated

is generally negligible. This may not be the case for six-degree-of-

freedom motion.

The determination of the trajectory of the ejected store requires that
the for-es and moments acting on the store, including damping, be calcu-

l3ted at each point in the trajectory. This is done by calculating the

three-dimensional velocity field in which the store is operating as seen

by the store. The free-stream velocity and all of the velocities induced

by the wing, fuselage, and other stores are summed up together with that

due to the angular velocity at the particular point on the store. The
velocity field over the store length is calculated in this manner. The

axial distribution of the forces aad moments due to buoyancy, potential
flow, and viscous crossf]ow are calculated from this velocity field and
then integrated over the store length. At the present time, only normal

force and pitching moment are calculated although the information for
calculating the side force and yawing moment can be readily generated

by the computer program.

3. COMPRESSIBILITY CORRECTION

Consider a wing-fuselage combination moving at Mach number M, and
angle of attack of the fuselage aB and assume that the flow field for

compressible subcritical flow is governed by a perturbation potential
which satisfies

(i - • xx ÷ yy + zz 0(I

where the x,yz coordinate system is fixed in the fuselage (see fig. 1).

The approach to be used in solving for the wing-fuselage flow field is to
transform the wing-fuselage combination to an equivalent incompressible one,
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determine the incompressible flow field for the equivalent combination, and

then transform the flow field back to the compressible speed.

The transformation of the compressibic space (x,y,z) to the incom-

pressible space (x',yl,z') can be done in a number of ways. For the

present work let us use the following transformation:

X1 y I y Z' X Z (2)
--M2

"The coordinates (x,y,z) and (x',yl,z') so related are termed corresponding

points. Using this transformation, the configuration cross sections in

corresponding planes are not changed, but the configuration is stretched

in the x direction to make it more slender. Consequently, the surface

I slopes in planes parallel to the x-axis are reduced by the factor 0,

Swhere • = _ - S. That is,

dy I = a dý_ dz__ 0 dz
dx' dx (3)

Let us now determine the boundary conditions on the wing and body.

At any streamwise section, the wing is defined by a thickness distribution,

Zth(X), and a camber distribution, z c(x). The linearized wing boundary

condition is then for z = 0

dz~h dz,\

3~7 V7w OVaB + dx dx()

"The body boundary condition will be written with the aid of the following

sketch:

n

a
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If the body radius in any plane perpendicular to the body axis is a(x),
then the linearized budy boundary condition is

V. (-B sin e + cos e + sin O

Let us now write .he potential and boundary conditions in the incom-
pressible (x',ylz') plane. If 0' is the potential function which
satisfies

xx + ofysy' + 0z6z = 0 (6)

then the boundary conditions in the M = 0 space which cerrespond to

equations (4) and (5) are

V.( ai dz th c (7)
Z + dx + dx')

and

V. -a sin 0 + da' = e, + 60' sin el (8)

If we now let

a4 (9)

then the incompressible problem is completely defined by the bourlary
conditions given by equations (7), (8), and (9), together with the condi-
tion that the perturbation velocities vanish at infinity.

We must now show how the potential 0 is related to •' at corres-
ponding points. From equations (2), (4), (7;, and (9), we find on the
wing

0 V ,_ dZth dZc
7 + dx dx )z

(c'
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On the body we have, from equations (2), (5), and (8),

daa~ 1%a-=V. -aA sines dx'e" +oot-V B sin e + 1 (11)

Both equations (10) and (11) can be satisfied if, at corresponding points,

=• (12)

Since the relationship given by equation (12) will satisfy both the wing

and the body boundary conditions, and since 0 will satisfy equation (1),

we have the desired solution to the compressible problem.

The velocities in the compressible space, u, v, and w, are related
to those in the incompressible space, u', v', and w', as follows:

Su~

U -= L y- I -

_ ~ _(13)3y 3y -jy-ý y'a 8

The procedure used to calculate the forces and moments acting on a

store in the presenie of a wing-fuselage combination for a compressible
subcritical Mach number will now be described in detail. Consider the

wing-fuselage corJ~ination shown in figure 2 and a single store located
relative to it as shown in figure 3(a). The store geometry is shown in
figure 3(b). The first step is to transform the wing-fuselage-store

combination to an equivalent one for incompressible flow. This is done
by using a coordinate system whose origin is at the fuselage nose as the
x,y,3 system. All of the configuration components are located in this
system. The transformation given by equation (2) is used to determine

the equivalent configuration. This results in a lengthening of the
fuselage and store by a factor 1/0. The methods to be presented in
section 4.1 are then used to obtain source distributiozts to represent
the volume distribution ot these equivalent bodies.
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The transformation also results in lengthening the wing chord by a

factor 1/0, which results in a thinner airfoil section. The methods to

be presented in section 4.2 are used to obtain the source distribution to

represent this thickness distribution.

The determination of the vorticity distribution to represent theI wing surface is also done in the equivalent plane. In addition to the
longer chord, the tangents of the wing leading- and trailing-edge sweep

angles are increased by a factor 1/0. If the wing is cambered, the slopes

of the mean camber surface are reduced by a factor 0 as is the angle of

attack of the wing. The vorticity distribution is determined by the methods

to be described in section 4.3. Interference of the store on the wing is

accounted for in the determination of the vorticity distribution.

The next step in the calculation of the forces and moments is to

calculate the velocity field in the fuselage coordinate system in the

vicinity of the store for the equivalent configuration. The perturbation

velocities induced by the fuselage, wing thickness distribution, and wing

vorticity distribution are calculated in the region that the incompressible
store would occupy if it were present. They are added together and trans-

formed back to the compressible space using equations (2) and (13).

Finally, the free-stream velocity components are added to the compressible

perturbation velocities. The example just considered is a case where the

wing and store ari at zero incidence relative to the fuselage axis. If

they are at incidence, the incidence angles are reduced by a factor of B

in the incompressible space.

It is important to point out that the incompressible perturbation

velocity field must be calculated and resolved into velocity components in

the fuselage coordinate system before transforming back to the compressible

space. Since the transformation of the configuration was done in this coor-

dinate system, the velocities must also be transformed in this system. Once

in the compressible space, the velocities can be resolved into any desired

coordinate system.

4. MATHEMATICAL MODELS FOR DETERMINING FLOW FIELD

The methods used to evaluate the forces on a released store require

detailed knowledge of the flow field in the region of the store in its

absence. Mathematical models of the aircraft components that influence
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this flow field are described in this section. The methods used to
account for mutual interference among the components are also described.

Models for the thickness or volume distributions of the isolated
aircraft components at 00 angle of attack have been developed for the
wing, fuselage, and stores. The wing thickness model is based on a dis-
tribution of two-dimensional point sources which represents the thickness
distribution of the airfoil cut out of the wing by a vertical streamwise
plane tirough the store axis. Adjustments to this model are applied
which generalize it to three-dimensional wings with sweep and taper.

The Zuselage and stores at 00 angle of attack are approximated by axisym-

metric bodies which are represented by a series of three-dimensional
point sources distributed along the body axes. Body angle of attack
effects are accounted for by doublets whose strengths are determined by

slender-body theory.

A model composed of two superimposed planar arrays of horseshoe

vortices is used to account for the effects of wing angle of attack, wing

geometric camber and twist, and winS loading changes due to the presence
of other aircraft components. The vortex strengths of the first vortex
array or lattice are proportional to the angle of attack of the wing and
account solely for the wing angle of attack effects. The second vortex
lattice, assumed independent of angle of attack, accounts for the geometric
twist and camber and the normal velocities induced at the wing by the fuse-

lage and stores, The velocities induced by these bodies are treated as an
"induced camber" which is added to the geometric twist and camber.

4.1 Axisymmetric Bodies at Zero Degrees Angle of Attack

4.1.1 Fundamental equations
The stream function * and the axial and radial velocity components,

U and Vr, respectively, due jointly to a free-stream velocity V. aligned
with the body ax4s, the x-axis, and a series of N point sources distri-
buted along the body axis are given in reference 4. With reference to
figure 1, which shows the coordinate system, they can be written in
dimensionless form as

1 - E+I* r = r* - Q +(x* -(x1 + r*2]" 2f (14)
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U* (x*,r* 1 Ale-1+ k~x k ~ (15)
r* dr* k=1 (x*- x) 2  + r.*2]3/

V*(x*,r*) _ 1 dj, k Qr (16)rr* dx* ( X* -X*)
2 + r *2]3/2

where

x* x r* r
R R R

SU* =U r* V
U 

_0 r

Q* Q- V =

Rc

and where fR is a reference length which for convenience will be taken

as the length of the body. The quantities Qk k are the source

strength and location, respectively, of the kth point source, and the

point (x*,r*) designates the field point in cylindrical coordinates.

4.1.2 Conditions used to obtain source strengths

A mathematical representation of the flow field about an axisymmetric

body is obtained by intposing three conditions on equations (13) and (1G).

These equations, the velocity equations, are used to calculate the

source strengths rather than the streamline equation because they were

found to give a better shape representation. This is due to the fact that

they require both body ordinates and surface slopes for their solution.

For the first condition che flow directions at (N - 2) points (xj,r),

j = 1,...,(N - 2), are specified by angles 0j. with respect to the positive

x*-axis; that is,

V* (x*,r*)
tan or j =,... I(N - 2) (17)
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or in terms of equations (15) and (16)

S ta 15 k~l(x* - xý) 2 + r*2 3/2

tan J3 + k=:r - ) 3+ )1 for j = ,...,(N- 2) (18)
q (x-x*

iL"x - xt)2 +

The locations (x*,r*) where the flow angles Pj are specified lie on1 3
the surface of the axisymmetric body being represented, and the values

of tan P correspond to the local body surface slopes, dr*(x*,r*)/dx*.

For convenience, equation (18) is rearranged to give a set of linear

algebraic equations in the Q*'s
Nk

N r - tan . (x*- x)

tan Qt = 1 3 for j - 1,...,(N - 2) (19)
k= [(x - xq)2 + r s

The second condition is that the sum of all of the source strengths

be zero. That is,

N

S0 (20)
k=1

which insures that the surface described by ip*(x*,r*) - 0, the mathemati-

cal representation of the body surface, will be a closed surface.

The third condition is the existence of a stagnation point at the body

nose; hence, U* - 0, at the origin, x* = r* = 0. By substitution into

equation (15) this condition becomes

N
Z y= 1 (21)

k=1

Since the sources are distributed along the positive x*-axis only, the

forward tip of the body is positioned at the origin and the 7* - 0 surface

is the body surface. Upon selection of the N source positions, x*,

equations (19), (20), -nd (21) comprise a set of N linear equations in

the N unknowns Q*. After solving for these, equations (15) and (16)
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can then be used to determine the velocities at any point in the flow field

around the body.

4.1.3 Calculative examples

Several arbitrary choices remain in the application of equations (19)

through (21) to particular bodies. In order to obtain adequate corres-

pondence between the shape of the body that is to be represented and its

mathematical representation, which is the surface ?P*(x*,r*) = 0, a

suitable selection is required for the number of sources and the (N - 2)

locations, (x*,r*) of equation (19), where the streamline direction
3 j

constraints are to be imposed. Excellent "fits" of several bodies have

been obtained to date and the selection of these parameters for two of

these bodies is given below.

A comparison between the surface shape of a particular body (the

fuselage of a wind-tunnel model described in ref. 5) and the ,'/*(x*,r*) = 0

surface is presented in figure 4(a). In examining this figure note that

the r* scale has been expanded over the x* scale. A criterion that

has been successfully used for this body, and for all reasonably smooth,

pointed or slightly blunted, slender bodies, is that the distance between
adjacent source points be proportional to the local body radius. For the

specific case shown in figure 4(a), the distance between source points

was 1.2 times the local radius. ror porportionality factors of the order

of 1.5, irregularitieoc of undesirable magnitude in the .*(x*,r*) =)

surface tended to occur, whereas, no noticeable improvement resulted

from factors less tlan 1.2. The most forward point source for the

example shown is located at x* = 0.002. For conically-tapped forebodies,

distances of this order are required for satisfactory fitting. For

values of the first source location signif;.cantly larger than 0.002, the

foresection of the -,*(x*,r*) = 0 surface tends to be blunter than

desired, whereas, smaller values, once again, show no noticeable improve-

ment. For bodies whose aft sections are blunt, such as -he example in

figure 4(a), the procedure is to extend the aft section by a boattail.

This procedure is based on the fact that in the real flow the body

streamtube separates from the body at the base and converges to a point

in the wake. The extreme aft point source is located at x* = 1.118,

and the number of sources used for this example is 37.
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The axial locations of the (N- 2) positions where the flow velo-

city directions, or surface slopes, are imposed have been chosen at

positions midway between adjacent source positions. Since this would

specify one too many slopes, a point in the middle of the body has been

eliminated.

Results for a blunt axisymmetric body are presented in figure 4(b).

The body is a cylinder with ellipsoidal ends and a length-to-maximum-

diameter r Uio of 10. The (N - 2) axial locations at which the flow

velocity directions, or surface slopes, were imposed are, as for the

previous case, midway between source locations. For this case no

precise criterion of source location was applied other than symmetry with

respect to the body center since the fore and aft sections are identically

shaped. Otherwise, the sources were concentrated in regions of high body

curvature. The total number of point sources for this case was 18.

4.2 Wing Thickness at Zero Degrees Angle of Attack

The flow about a symmetrical airfoil at 00 angle of attack is the

basic flow used to account for wing thickness. Its mathematical represen-

tation is obtained in much the same manner as that for the axisymtmetric

bodies. It is then extended to wings with sweep and taper. It should

be noted that the flow parameters in this section that pertain to the

symmetric airfoil at zero angle of attack are distinguished by the

subscript "2D."

4.2.1 Fundamental equations

The stream function, .2D' and the flow velocities, U2 D and W 2D)

(fig. 3) due to a uniform flow of velocity V in the positive x

direction with a series of N two-dimensional point sources distributed

along the x-axis are given in dimensionless form (ref. 4).

N
"2D k . (x* X.)

k =Ik

d N (x* -x*)
UD (X*,Z*) =d2-D = 1 +k (23)

d Z F, (x* - X +
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- ,* N Q~z*
=-d ___ _____2Rk(24)W2D(xz) d E- (x* - *)2 + z*2

I where

u* L _u w* ww

ok V.i-_•
S=k2ircV , ' cV

and where the reference length c is the chord. In these equations Qk

and xý are the source strength and location, respectively, of the kth

point source.

4.2.2 Conditions used to obtain source strengths

The flow field about a symmetrical airfoil is found by imposing
three conditions on equations (23) and (24) analogous to those used for

the axisymmetric case. First, at (N - 2) points (x*,z*),
1j

S=1,... (N - 2), which correspond to airfoil surface locations, the

flow direction is set equal to the corresponding local airfoil surface

slope, tan •9 = dz*(x*,z*)/dx*. Thus we obtain

W* (x*,z*)
tan W2D ') for j = 1,...,(N - 2) (25)

t j UWD(x•,Z)

The resulting expressions are

N Z*-- tan p (x* - )

tan 3. =j I for j = 1,...,(N- 2) (26)
3 X*)' +

The second condition, the sum of the source strengths equals zero, gives

N

T. 4 = 0(27)
Sk=i
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The stagnation condition UD 0 at the leading edge, x* = z*= 0,2D
leads to the result

N

k=1 
(28)

The resultant set of N linear equations given by equations (26) through

(28) are solved for the N unknowns Qt. The velocities at any point

can then be calculated using equations (23) and (24).

4.2.3 Calculative example

The foregoing method has been applied to a NACA 65A006 airfoil and

the results are shown in figure 6. The criterion used in selecting point-
source locations is that the distance between adjacent sources be propor-

tional to the local airfoil thickness. This is analogous to the criterion

applied to the first axisymmetric body considered previously. The extreme

fore and aft source locations are x* = 0.0006 and x* = 0.996, respec-
tively, and the total number of sources is 43. Tho axial positions at

which the (N - 2) velocity direction conditions -.re imposed, were

intermediate between adjacent source locations, omitting the position near

the mid-chord. The comparison between the actual airfoil shape and the

calculated shape shtwn in figure 6 shows good agreement. The velocity
field around the air~foil car, ;be c~ulcuiate2d u-;in,ý Pcq-jations (23) and (24).

4.2.4 Calculation of the velocity field about wings with
tsweep and taper

S~The calculation of the flow about a symmetrical swept tapered wing

from knowledge of the flow about an airfoil following the method of

reference 6 is briefly discussed in this section. The geometry associated

with the problem is illustrated in figure 7. The circular symbols

represent planform locations of points where the flow velocity is

desired. Lines of constant percent chord a::e shown, together with

normal lines that arc perpendicular to the lines of constant percent

chord at the circular symbols. Airfoil sections along the normal lines

are called normal sections.

The calculation of the thickness-induced velocities for an infinite

swept wing by simple swcep theory requires a knowledge of the thickness

distribution of the normal airfoil section and the component of the free-
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stream velocity normal to the leading edge. For swept and unswept wincjs

of finite span, in regions sufficiently removed from the wing root and

tip, the lines of constant pressure tend to be parallel to lines of

constant percent thickness. Furthermore, for wings of constant thickness

ratio and constant thickness distribution over the span these lines are
parallAl to lines of constant percent chord.

Referring to figure -', the calculation by simple sweep theory of the
perturbation velocities un and w (w is the vertical velocity below the

point) requires that a source distribution be determined which represents

the normal airfoil section through the point. Then the perturbation
velocities can be determined for the component of the free-stream velocity

parallel to this normal section, V ,cos A where A is the angle between

the normal section and the local chord. The velocity V sin A perpendicular

to the normal section does not enter the calculation of un. Once un is

evaluated, theni the perturbation velocities u and v in the x and y

direction, respectively, are simply given by

u = un cos .* (29)

v = unsin A (30)

Designating .. LE and -"TE' respectively, as the leading and trailing edge
sweep anojles, is given by

an A tan E+ (tan ATE - tan PE) for 0 < 2 ý.1 (31)

where x/c is a fraction of the local chord. For locations forward of the
wing leading edge (or behind the trai±Lng edge), A is taken as ALE

(or A TE).

If the above method is to be used for tapered wings and velocities

are required at a large number of points undex the wing, then a large

number of source distributions would be required, one for each point,
since the normal airfoil section would be different at each point. A method
for calculating the perturbation velocities without calculating ? source
distribution for each airtoil section is given in reference 6. It is
assumed there that the flow over any normal section is related to that
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over the streamwise section through the point and therefore, only one

"source distribution is required.

With regard to evaluating Un) consider the two constant chord wings
in figure 8. Both the swept and unswept wings have identical streamwise

chords, streamwise thickness ratios, and thickness distributions. The

thickness ratio of the normal section of the swept wing is larger than

that of the streamwise airfoil (of either wing) by a factor 1/cos ,. It

is shown in reference 6, that, since the perturbation velocities depend

linearly on thickness (for small thickness ratios), the effect of the

larger thickness of the normal airfoil is offset by the smaller imposed

velocity, V cos A, in the normal direction. Thus, the perturbation

velocities of normal scctions of the swept wing are equal to those at

corresponding points of the unswept wing. This result holds approximately

for symmetrical tapered swept wings as well. Thus, the streamwise and

lateral perturbation velocities for zhe swept and tapered wing, u and v

of equations (29) and (30), may now be written in terns of the perturbation

velocities of the streamwise airfoil section as

4. • u* = U* Cos = (U*D- l)cos .\ (32)
*2D 2D

V* = U•Dsin 1) = (U•D- l)sin A (33)

Sw= w*- (34)
2D WWD

For tapered wings the local sweep angle, .*, as given by equation (31) is

used in equations (32) and (33).

In summary, flow equations for the velocity components applicable

to swept and tapered wings with similar streamwise sections in the span-

wise direction are given by

N (x*-

U*(x*,z*) = 1 + cos Zk (35)
X=0- (X* - XV) + Z*
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N- (x* -

V*(X*,Z*) = sin A N (x* (36)
ki (x* - )+ z*

W*(x*,z*) Z Q z (37)
k=i (x* - xt) 2 + z*2

In these equations, the source strengths q and their locations

correspond to the local streamwise airfoil section of the swept and

tapered wing of interest. All quantities are made dimensionless on the
basis of the local streamwise chord of the swept and tapered wing of

interest.

4.3 Wing Angle of Attack; Lifting-Surface Theory

4.3.1 Descript.on of method

The model used to account for wing angle of attack, wing geometric

twist and camber, and interference-induced twist and camber is the

method described in references 7 and 8. This method is a lifting-surface
theory with the planform of the wing repcesented by two superimposed arrays

of horseshoe vortices representing the basic and additional lift distri-

butions. In contrast to a lifting-line theory, this method employs

vortices distributed both chordwise and spanwise. The wing planforms

handled by the method must be representable by a series of straight-

line segments. The camber and twist distribution of the wing is arbi-

trary. The details of the method will not be repeated here, as they are

contained in the above-mentioned references; however, the following

paragraph will briefly describe the method.

The vortex lattice is determined by dividing the wing into area

elements formed by lines of constant percent chord and lines parallel

to the root chord. A horseshoe vortex is placed with the bound portion

at the quarter chord on each of the area elements. The two semi-infinite

trailing legs are in the plane of the wing and at the side edges of the

area elements. The boundary condition of no flow through the wing is

applied at the mid-span of the three-quarter chord of each area element.

Two vorticity distributions are determined, one which is a function of

angle of attack and the other which is not. The angle of attack
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distribution cancels the component of the free-stream velocity normal. to

the wing planform. The zero angle-of-attack distribution accounts for
the local angle of attack due to twist and camber when the wing root chord
is at 00 angle . attack. The local angles of attack at the wing control

points due to geometric twist and camber are input to the computer program

and the induced camber due tc interference of the fuselage and stores is

calculated by the program and ddded to the geometric camber. Since both
vorticity distributions are required to satisfy the boundary condition of

no £low through the wing at the control points, they are obtained by solving

two sets of simultaneous algebraic equations which differ only on the right-

hand side. The computer program of reference 8 then uses these vorticity

distributions as input to calculate the velocities induced by the wing at

any point in its flow field.

4.3.2 Effect of the number of vortices on the calculated flow field

Since the wing is represented by a finite number of horseshoe

vortices, the question arises as to how close to the wing the velocity

field can be calculated within prescribed error limits. Stores are often

sufficiently close to the wing that the number of vortices required to
obtain accurate flow fields is quite large. The purpose of this section

is to provide a notion of the lattice size required for reasonably

accurate results at a given distance below the wing.

The calculations to be shown have been made for the swept wing

geometry of references 5 and 6, as shown in figure 9. The wing is taken
to be at 60 angle of attack. The caLculations are made for downwash

and sidewash due to angle of attack neglecting fuselage and wing thickness

effects. The flow field results are presented in terms of the dimension-

less perturbation velocities normal to the plane of the wing (w/V,) and

in the lateral direction (v/V,,) versus the chordwise distance (x/c) at

the mid-semispan of the left wing panel for the two distances below the

wing (z/c) of -0.10 and -0.05. The coordinate system is shown in figure 10.

The perturbation velocities u, v, arid w are related to the components

U, V) and W of the local velocity vector as follows:

U =v cos cw + U

V= v

W V sin a + w
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The normal and lateral velocities at z/c = -0.10 for two combina-
tions of chordwise and spanwise vortices are shown in figures 11(a) arid
11(b). Cyclic chordwise variati-,ns evident for the 4 chordwise by 9
spanwise (4x9) array are imperceptible for the 10x9 array. Curves f,..r

a 7x9 array were indistinguishable from those for the 10x9 array except
near the wing leading edge. It appears evident from the rapid convergence
that curves from arrays with an increased nurmber of chordwise vortices
would coincide with those from the 10x9 array.

Velocities at z/c = -0.05 for the same two array, as above are

presented in figures 12(a) and 12(b). For this case, small zrnplitude
fluctuations persist for the 10x9 array. It is evident from the pattern
of convergence, however, that the 10x9 curve clcsely approximates the
ultimate curve, and that the cyclic variations would perhaps be impercept-
ible for a 13x9 array.

5. CALCULATION OF PLOW FIELD

5.1 interference Eftects

Methods have been presented for determining the flow fields of the
fuselage or store alone and the winc alone. In the case of a wing-fuselage
combination with stores, the flow field is the sum of the field', due to
the v--rious components plus one due to interference among the components.

in terms of the potential functions, we have

5 B = ' W t + + .B + + ' ."WB *wt wt Bt B

.= potential due to wing thickness

= potential dve to wing twist, camber, and angle of attack

potent.al due to fuselaqu volume and external store volumes

OB =potential due to fusclage and external. store angle o• attack
B and sidewash

= pot.ential due to wing-fuselage and wigq-atore interference

.0
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In order to determine Oi, the only component not considered so far,

we can use two means of arproach; a noniterative approach and an iterative

approach. In the noniterative approach singularities are placed on the

fuselage and the wing, and the strength of the singularities are all

calculated simultaneously using a large number of simultaneous equations.

This approach requires large computer times and may be limited in accuracy

by the number of simultaneous equations the computer can solve. In the

iterative approach, adopteC here, the computer time is kept reasonably

short and the accuracy of calculation is edequate.

In the iterative approa-h to determine the flow under the wing of

the wing-fuselage combination, consider first the wing :*±one at the

airplane angle of attack. Now let the wing alone have velocities induced

normal to it by the fuselage flow field. The wing boundary condition is

no longer satisfied, but a wing-alone solution producing equal and oppo-

site velocities to those induced at the wing by the fuselage can be found

from the vortex-lattice program. This solution represents the first

approximation of the interference solution in the vicinity of the wing.

To obtain the first approximation to the interference potential in

the region of the fuselage, consider the fuselage alone, and then let its

normal velocity distribution be modified by the induced flow field of the

wing alone. The additional fuselage solution required to cancel these

norwal induced velocities -is the first approximation to the inter-

ference field in the neighborhood of the body. It is clear that an

iterative scheme can be set up to account for higher-order interactions.

For our purposes only one iteration is required, as comparison between

experin.ent and theory will show.

Some simplification has been found possible. Consider the applica-

tion of the preceding equation to the flow field under the wing. For a

high-wing monoplane the velocities associated with 6Bt and OB, both

produce velocities normal to the wing, ali-.ough for a midwing configuration,

OBt produces no sucb velocities. By considering the normal wing velo-
cities associateu with ýBt and OB., we can calculate in!erference

potentials wit and Oi_ using the vortex lattice program. These

potentials would have the properties that

- + U. 0 on the wingdn t1
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• n • + - on the wing

w.here n is normal to Lhe wing surface. The physical argument could be

mace that if the stur of •B and Oi produces zero normal velocity at

the wing surface and dies away with distance from the surface, it will

produce negligible velocities under the wing except in the neighborhood

of the wing-fuselage juncture where Lhe first approximation to the inter-

fe-rence potential is not accurate. In this region the mutual interference

problem must be solved. The same argumert" can be made for the sum of

OBt and Oit.

A calculation was made to check this argument. The normal velocity

at the wing associated with OBa is the upwash produced by the doublet

distribution representing the body at angle of attack, also termed

Beskin upwash. A twist distribution equal and opposite to that due to

t';e Beskin upwash was introduced into the wiag, with zero twist in the

region blanketed by the body, and the flow field associated with the

resulting Oia potential was calculated. The downwash and sidewash fields

resulting from the combined effect of pB and Oi was generally less

than a degree. Accordingly, the assumption has been made that the combined

effect of OBa and Oia can be neglected. A precise calculation is

possible, but is not warranted at this time. While the 0. + Oi effect

h!s been neglected, the k•Bt + 0-t tez'ms have been included. Both fuse-

lege and external store effects have been included in these terms.

With regard to the flow field under the body, the sum of !Bt and

satisfies the body boundary condition exa'tly. The sum

ýt + Ow a + 2i must produce zero normal velocity at the body. As we

move downward from the body, the induced veleciticz due to this sum must

decrease. Accordingly, wc have neglected tnese induced velocities

everywhere under the body.

The simplifications and approximations introduced in making the

wing-body :low-field calculation greativ reduce the c.omplexity of the

analysis and the amount of computer time required at very little loss in

accuracy. The adequacy of the above procedure is to be judged by the

agreement between experiment and theory for dowtnwAsh aid sidewash subse-

quently to be presented.
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5.2 Method of Calculation

5.2.1 Single store under the wing

The first step in calculating the flow field for the case of a

single store under the wing of a wing-fuselage combination is to obtain

source distributions to represent the volume distributions of the fuse-
lage and store in the incompressible space as well as the wing thicknessdistribution in this plane. The next step is to calculate the vorticity

distribution to represent the lifting wing. The velocities induced at
the wing surface by the store, and also the fuselage if the wing is not

a midwing, are treated as an induced camber and are added to any geometric

twist and camber.

The flow field in the vicinity of the store is calculated by summing

up the velocities induced by the fuselage and the wing. If additional

stores are present, their influence on the wing is accounted for as are

the velocities induced by their volume distributions in the vicinity of the

ejected store.

5.2.2 Single store under fuselage centerline
In calculating the velocity field under the fuselage, the presence

of the wing is ignored for the reasons discussed in section 5.1. Thus,

the first step is to obtain a source distribution to represent the fuse-

lzge volume distribution in the incompressible space. For zero degrees

angle of attack, the velccity field induced by this source distribution

is the field which the store sees unless other stores are present in

which case the fields induced by their volume distributions are additive.

Fuselage angle-of-attack effects are treated as a Beskin upwash and given

by

VO sin a38)

where w' is the velocity normal to the fuselage axis in the incompress-

ible space a distance z' from the axis, a is the local fuselaqe radiuts,
and a is the fuselage angle of attack in the incompressible s%,ace.

This velocity field is added to the volume-induced velocity field.

Equation (38) is obtained from the complex potential for a circular

cylinder in uniform flow given on page 29 of reference 9.
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5.2.3 Multiple store under the wing or fuselage

The flow-field calculation for the case of a TER or MER installation

is performed in a manner identical to that for the single store with the

.stores remaining on the rack treated as additional stores in the flow

Field. It is apparent from the close proximity of the stores on a rack

that store-store interference may be important. At the present time, only

body-volume effects are accounted for since they are the dominant effects

as will bue eect are acc distribution for each store is calculated as

if the store were in a uniform flow by itself.

5.3 Comparison of Calculated and Experimental Flow Fields

References 1 and 5 cgntain the results of extensive experimental

fLcw..iield surveys. Those presented in reference 5 were taken in the

vicinity of the wing-fuselage combination shown in figure 9. The wing-

fuselage combination used in reference 1 is shown in figure 2. This

model is a 40-percent scale model of that shown in figure 9. Reference 1

presents, in addition to data taken under the wing-fuselage combination,

data taken with a pylon present at the 1/3 semispan location, a TER rack

attached to the pylon, and, also, with stores mounted on the two shoulder

positions of the rack. By building the configuration up component by

component, as was done, interference effects can be isolated.

The majority of the data comparisons presented in this section will

use the data of reference 5. A few comparisons with the data of reference 1

will be made primarily to show the importance of knowing the flow character-

istics of the empty wind tunnel when comparing with wind-tunnel data.

Since the primary interference flow-field calculation method does not

include a model for the pylon or rack, comparisons with the data with these

components present will not be made. A comparison will be made with the

perturbation velocities induced by adding the two shoulder stores to the

TER rack.

3.3.1 Comparison with data from NACA RM L56J19 (ref. 5)

Reference 5 contains extensive experimental flow-field surveys in

the vicinity of a swept-wing fuselage configuration for a Mach number of

about 0.15. The experimental wing-fuselage model is that shown in figure 9

with the coordinate system and angle definitions shown in figure 10. The

positive directions of the local angles of attack and sidewash are as indi-

cated in figure 10. It is noted that positive sidewash angle corresponds

to flow coming in from the left when facing forward on the wing. This
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sign convention agrees with that used in the present theory. The sign of

the experimental sidewash angles taken from reference 5 has been changed

to conform with the present sign convention.

Comparisons are made for a very small angle of attack at locations
below the wing and remote from the fuselage to see how the two-dimensional

point source model accounts for wing thickness effects. Comparisons under

the wing at angle of attack serve principally to assess the vortex-
lattice method. Finally, comparisons under the fuselage for both 00 and

60 angle of attack serve to evaluate the methods used to account for the

fuselage.

F~r all experimental data used, estimates of the experimental

accuracy are given in reference 5 as +1.00 and +1.50 for local angles of

attack and sidewash, respectively. Included in the quoted experimental

accuracy are estimates of probe alignment errors and wind-tunnel mis-

alignment angles.

For all computations in this section involving the vortex-lattice

model, a 10 chordwise by 12 spanwise array (on one wing panel) was

used. All the flow angles were measured under the left wing panel.

The source strength and location distributions that have been

obtained for the 65A006 airfoil (see section 4.2.3) have been used in
conjunction with the method of extension to swept and tapered wings

described in section 4.2 4 tc evaluate the flow under the wing at 00
angle of attack for the swept wing configuration illustrated in figure 9.

The calculated local angle of attack and sidewash angle results aze
compared with the data of reference 5 in figure 13 for three distances

below the wing. The angles are plotted against axial distance from the

local leading edge in percent local chord. The comparisons are at the

mid-semispan. This location was chosen in order that the influence of
the fuselage which was present for the measurements would be negligible

and thus the accuracy of the wing thickness model could be assessed. The
small influence of the fuselage is illustrated by including for the

z/c = -0.17 case of each figure the calculated angle including and

excluding the fuselage effects. As can be seen, they are very small.

It should be noted, also, that the measurements were made for a wing

(and fuselage) angle of attack of -0.2°. The effect of this angle of
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attack on the calculated results, shown for the z/c = -0.17 case, is

not significant.

From figure 13 it can be seen that the computed and experimental flow

parameters are in quite good agreement, with the largest differences

tending to occur ahead of and behind the wing. These differences could

be caused by any combination of the following things: inaccuracies in

the modeling of the three-dimensional wing thickness effects, viscous

effects which have been ignored, and wind-tunnel stream angles.

The combined effects of the vortex lattice and wing and fuselage

thickness models were examined over a free-stream angle-of-attack range

from -4.3° to 12.30, and comparisons between prediction and experiment,

in terms of the local angle of attack and the angle of sidewash versus

chordwise distance, are presented in figure 14. These comparisons were

made at the mid-semispan, 17 percent of the local chord below the wing

and show how the accuracy of tIe method varies with angle of attack.

Similar comparisons at 7, 17, and 27 percent of the local chord below

the wing for a free-stream angle of attack of 6.10 are given in figure 15

and exhibit the accuracy as a function of distance from the wing.

Finally, comparisons at the quarter, half, and three-quarter semispan

locations for 6.10 angle of attack at 17 percent of the local chord below

the wing are presented in figure 16. From these comparisons the accuracy

as a function of semispan location can be assessed.

Figures 14 to 16 exhibit agreement between theory and experiment

which is felt to be adequate for the present investigation. The largest

differences tend to occur for the largest angle of attack of 12.30

(figs. 14(b) and 14(c)), the smallest distance below the wing of

z/c = -0.07 (figs. 15(a) anc< 15(b)), and the most inboard location of

y/(b/2) = -0.25 (figs. 16(a) and 16(b)). This behavior is as might be

expected since the assumption of linearity becomes less accurate as the

angle of attack increases. For instance, 12.3 is beyond the linear

portion of the lift curve for the wing-fuselage combination, while there

is an assumed linearity in the vortex-lattice model. In addition, the

superposition of wing thickness effects and wing angle-of-attack effects

is increasingly in error with increasing angle of attack. Some error is

developed, also, by excluding fuselage angle-of-attack effects.
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Some error arises through the approximate wing thickness model used.

In figure 14 this error can be assessed by using the vortex lattice method

together with experimental thickness effects to determine the local angle

of attack and sidewash angle. These results are shown by the dashed lines

of figure 14. These curves have been obtained by adding the difference

between the experimental data and the calculation for aw = -0.20,

where the flow angles are due principally to wing thickness, to the

calculations made for the other angles of attack. As can be seen, the

resulting curves agree better, in general, with the experimental data

than the purely theoretical solid curve. This agreement can be taken as

a measure of the accuracy of the vortex-lattice method.

Comparison of calculated and experimental local angle of attack at

various distances under the fuselage axis for near zero degrees (-0.20)
and 6.10 free-stream angles of attack are presented in figure 17. As was

discussed in section 5.1, the flow perturbations due to the wing thickness

and the vortex lattice are not included. The computations for -0.20 angle

of attack are based on fuselage thickness alone; that is, the small effect

of the -0.20 angle of attack has been ignored. The fuselage angle-of-

attack effects for the case of 6.10 angle of attack were calculated using

equation (38). This velocity is added to the fuselage thickness velocity

to obtain the local angle of attack.

From figure 17(a), a reasonable agreement between the calculated and

experimental results can be seen for the case of -0.20 angle of attack.

In the region aajacent to the cylindrical portion of the fuselage, a

fluctuation in the computed values of about 0.20 amplitude occurs for

the case z/amax = -1.16. The quantity amax is the maximum fuselage

radius. The amplitude is reduced for z/amax -1.55 to less than 0.10,

and is imperceptible for z/amax = -2.21. The origin of this variation

is, of course, the fuselage thickness model. The magnitudes of the

point sources representing the fuselage thickness are such that the

calculated body shape has a slight "ripple" in the cylindrical section

(which is imperceptible at the scale of the p* = 0 sketch given in

figure 4(a)), and the adjacent velocity field of course has a corresponding

ripple which diminishes with distance from the fuselage. The field points

at z/amax = -1.16 are 16 percent of the fuselage radius from its surface

in the cylindrical portion, and a small fluctuation is therefore not

surprising. While the amplitude of the present variation is only 0.20,
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this case does indicate the desirability of an accurate fuselage repre-

sentktion when stores in the immediate vicinity of the fuselage are under
consideration. On the basis of the source distributions that have been

obtained for axisymmetric bodies with cylindrical sections, fluctuations
in the cylindrical region appear to be characteristic, and the best pro-
cedure is to minimize their magnitude by increasing the number and varling
the locations of the sources.

Considering still the case of -0.20 angle of attack, figure 17(a),
the data lie slightly above the computed values in the region behind the
wing, x/c > 1.0. This is due to small deviations between the analytic

representation of the fuselage shape and its actual shape in this region.

Both the data and calculated values will commence to rise in this region
since the fuselage radius beginning at x/c = 1.5 decreases with increasing

x/c. It is indicated on figure 4(a) that the ,j = 0 surface contracts

more gradually than the actual surface, and the calculated angle of attack
will be low as a consequence.

For the 6.10 angle-of-attack case (fig. 17(b)), the agreement is
about as good as that at -0.20 except at the most remote distance of

z/amax = -2.21.

5.3.2 Comparison with data from NEAR TR 24 (ref. 1)

Figure 18 presents a comparison between the calculated flow field and
the measured flow field using data from Volume IV of reference 1. The
wing-fuselage model used in the tests is shown in figure 2 and the data

presented in figure 18 were taken under the left wing panel at the 1/3
semispan location 30 percent of the local vwing chord or 2.12 inches below
the wing. No pylon was present on the wing. The Mach number is 0.25.

The region of the survey can be seen more clearly by examining
figure 3(a). The purpose of the survey was to measure the velocity field
in the region the axis of the store shown in figure 3(a) would occupy if
it were inserted one store diameter, 0.75 inch, below the location shown
in the figure. The data in figure 18 are plotted against (x/,) wheres

Is is the length of the store shown in figure 3 and xs is measured from
the position the store nose would occupy if it were present. The directions

of the positive velocities are shown in figure 10.
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Data are presented in figure 18 for two angles of attack, ap, of

the wing-fuselage combination. This angle, ap, is the angle between the

fuselage axis and the wind-tunnel longitudinal axis. Figure 18(a) is for
0 0a = 0 and figure 18(b) is for a, = 6°. Two theoretical curves are

shown on the figure. One assumes an angle of attack equal to ap and

the other assumes an angle of attAck different from ap. This second

case takes into account the wind-tunnel stream angles indicated by the

tunnel-empty survey made and reported in Volume IV of reference 1. These

data were analyzed in Volume I of reference 1 and it was found that for

ap = 0 a tunnel-empty upwash angle of 1.25° existed in the portion of
the tunnel where the survey of figure 18(a) was taken. Likewise, a

tunnel-empty upwash angle of 0.750 was indicated for ap = 60 (fig. 18(b)).

The difference in the tunnel-empty upwash angle for the two values of a

is due to the fact that as ap is changed testing is done in a different
part of the tunnel test section. Since tunnel-empty surveys vere only

taken at the one spanwise location, a uniform correction was made to the

wing angle of attack used in the vortex-lattice calculation rather than
using a wing twist distribution due to stream angle of the wind tunnel.

Figure 18(a) for ap = 00 indicates that better overall agreement
with the experimental data is obtained -when the tunnel-empty stream angie

is accounted for, particularly in the region below the wing leading edge,
(x/I)s = 0.05. This same conclusion cannot necessarily be drawn from

50
figure 18(b) for ap = 60. In some regions the agreement is improved an3

in others it is made worse. On the basis of these comparisons, it is

felt that to make precise comparisons with experimental flow-field data
a knowledge of the angle of attack which the wing actually seeg in the

wind tunnel is required. The spanwise variation should also be taken

into account by imposing a twist distribution on the wing in the vortex

lattice calculation. In the tests reported in Volume IV of reference ],

tunnel-empty tests were not performed anywhere but at the 1/3 semispan

location nor were they performed in the region the wing chord plane would

occupy if it were in the tunnel. If these data had been taken and used

in the theoretical calculations, the overall agreement may have been
improved. The agreement exhibited in figure 18 is still quite good for

the upwash, W/V., and sidewash, V/V., velocities; it is of the order of

+0.01. In terms of local flow angle, this is +0.58
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Figure 19 presents a comparison between experiment and theory for the
same conditions as those of figure 18 except that the Mach number is 0.70.
Figare 19(a) is for a =. 00 and figure 19(b) is for a = 60. In the

theoretical calculations, the tunnel-empty stream angles as given in
Volume I of reference 1 for these test conditions have been included in
the wing angle of attack. The overall agreement between experiment and
theory is not quite as good as exhibited in figure 18 for a Mach number of
0.25. In this case, the velocity ratios are predicted within +0.02 or in
terms of local flow angle, +1.20. This difference may be caused by not
knowing what free-stream flow the wing actually saw or by inaccuracies in
the method used to account for compressibility effects.

Since the primary interference flow-field calculation method does not
incorporate models for a pylon and a rack, comparisons with flow-field data
taken with these components present will not be made. Their presence will
be accounted for by slender-body theory. The method does, however, include
models for other stores present in the flow field as in the case of a
TER or MER rack. Consider the TER grouping shown in figure 20 which was
tested in reference 1. The pylon and TER rack are not shown in the figure,
although they were present during the tests. The wing-fuselage combination
is shown in figure 2 and the store geometry in figure 3(b). By _ubtracting
the data obtained without stores 2 and 3 present on the TER rack from the
data obtained with these two stores present, the velocity increments due
to the addition of the two stores can be determined. These increments have
been determined for one axial survey at two angles of attack and the data
are plotted in figure 21. The survey was conducted in the region the axis
of store 1 in figure 20 would occupy if it was one diameter below the
location shown in the figure, that is, -2.83 inches below the wing chord
plane. The velocities are plotted in figure 21 against ( s/9) where ts
is the length of the store shown in figure 20 and xs is measured from the
position the nose would occupy if it was present.

Also shown in figure 21 are the results of theoretical calculations.
These curves were obtained by subtracting the velocity field calculated
under the wing-fuselage combination from that calculated under the wing-
fuselage with stores 2 and 3 present including wing camber induced by these
stores. By doing this, perturbation velocities associated with wing angle
of attack and fuselage volume are subtracted out and only perturbation
velocities associateO with the volumes of stores 2 and 3 and wing camber
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induced by these stores remain. Since these are not function, of angle

of attack, the theoretical curves for both figures 21(a) and 21(b) are

the same. A comparison of the data plotted in the two parts of the figure

also indicates little effect of angle of attack. The agreement between

experiment and theory is quite good. The theoretical lateral velocity

increment, AV/V., is zero, as is borne out by the data, since stores 2

and 3 induce equal and opposite lateral velocities. In addition, because

of the large distance from the wing, the vorticity distribution in the

wing which cancels the small amount of store-induced camber contributes
nothing.

6. PRIMARY INTERFER3•NCE FORCE AND MOMENT

The calculation of the trajectory of a store being ejected from an

aircraft requires the determination of the forces and momn'nts acting on

the store at any point in its trajectory. To calculate tnese forces and

moments accurately, the nonuniform nature of the flow field must be

accounted for. In the previous sections of this report, mathemiatical

models have been presented for the various components of the aircraft

which allow the calculation of the perturbation velocities induc..ed at

any point in the flow field by these components. The effect of these

velocities in changing the forces and moments acting on the store are the

known dominant effects and will be termed primary interference. The term

additional interference will be used to identify the additional change due

to mutual interference between the wing, pylon, and store. This section

of the report will describe the calculation of the primary interference

force and moment. Additional interference will be discussed in section 7.

Generally, it is the aim to put the dominant interference effects into

primary interference so that the additional interference can be neglected.

By summing up the perturbation velocities due to the aircraft compo-

nents and adding them to the free-stream velocity, the total velocities at

any point in the field where the store will be located can be calculated.

By performing this calculation for various points over the length of the

store, the complete nonuniforra flow field can be calculated. Pitch, yaw,

and roll damping can be easily accounted Zor by adding the angular velocities

of the store to the calculated flow field. From the resulting nonuniform

velocity field, the load distribution on the store can be calculated, and

the forces and moments can then be obtained by integrating over the store

length.
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This section of the report describes the methods used to calculate

zh- forces and moments from the known velocity field. Store forces and

momentL due to buoyancy, slender-body theory (potential flow), and viscous

crossflow are determined as well as the force and moment due to the store

empennage if present. The empennage is restricted to triform or cruciform

tail arrangements. The forces and moments thus do not depend on the roll

attitude of the store provided that vortex separation is not present.

This restriction is not made of necessity, but because it includes nearly

all of the cases of interest. The damping due to the pitching motion of

S~the store is accounted for by adding to the velocity field increments due

to pitching rate. The velocity field at any point on the store is, thus,

that seen from the store.

Figure 22 shows the XsYsZs coordinate system fixed in the store with

the origin at the store nose. The velocities Us) Vs, and W s are positive

in the Xst Y.) Z. directions. The store velocity relative to the atmos-

phere is V,,, and the store angle of attack is a s. The velocity compo-

nents, UsI Vs, W s are calculated at points which would be on the store

surface or axis if the store were present. They are

u = VW Cos aS Us us Uvl +U th

Vs =V vl +V th (39)

Ws = V. sin as + wv + Wt + 6(Xs - Xs~g

SThe quantities V. s cos as and V. ssin a s are free-stream components.

The terms with subscript vl are velocities induced at the point by the

vorticity distribution representing the wing. Those w:ith the subscript

th are the sum of the velocities induced by the thickness distributions

of the wing, fuselage, and any other stores present on the aircraft. The
term ý(x s - X s,cg ) in the expression for W s accounts for the pitching

S~motion of the store. For points off the body axis, a 5 term should appear

in the expression for U s. This term, being very small, has been neglected
it) the present work. Yawing motion can be accounted for by adding a
similar term to V s. The velocities of equation (39) are made dimension-

less by V to obtain
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Us
u•* V- =cos a + ui + Uh
s V00  s vl+Uth

s

Vs S

ws •~(xs - x ,g

• W• = * 7 = sin s + WV +Wh
S 0 V -- 40

S s

It is noted that b is positive for nose-up motion. These expressions,

along with the work of the preceding sections of this report, allow the

velocity field at any point which would lie on the store surface or axis,
if the store were present, to be calculated. The pitching rate of the
store, e, is determined as a function of time during the integration of
the equations of motion.

The calculation of the forces and moments on an external store in a

nonuniform flow field is basically a difficult problem which can be
significantly simplified by the assumption of slenderness valid for all
sections of-the store except the fins (or blunt noses). The method used
herein is similar to that of McKinney and Polhamus (ref. 10). For the
purpose of understanding the method used herein, consider the variation
of downwash and sidewash angles along the centerline of a store. Let the
store be cambered in both the vertical and lateral directions so that its

s axis now conforms to a streamline of the flow with its downwash and side-

wash components. Any lift or side force due to the downwash or sidewash

velocities will be eliminated in this fashion, and the pressure field
acting on the body will be, to the first order, the sum of its own
thickness pressure distribution plus the static pressure field acting in
the nonuniform flow. The resultant forces (excluding drag) and moments

of the doubly-cambered body will be due solely to the static pressure

field of the nonuniform flow. These components of the total forces and

moments are thus due to buoyancy.

The assumption concerning the camber of the store can now be relaxed,

and downwash and sidewash velocities can be considered to act over the

length of the axisymmetric store. It is an easy matter using slender-
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body theory and a, .ar=nt-mass methods to evaluate the normal- and side-
force distributions on the store together with their resuiting moments.

For stores subject to a lar,' value of the combined angle resulting from

downwash and sidewash, separation of the body boundary layer may occur.

Beyond this point, slender-body theory is not continued. In the present

calculative method, we have assuned that simple viscous crossflow theory

is applicable downstream of the separation location.

6.1 Buoyancy Force and Moment

The equations for the buoyancy normal force and pitching moment will

now be derived for compressible flow. If the pressure coefficient is

defined as

p - p"
Cp (41)
p q~s

then it can be expressed in terms of Mach number and velocity for subsonic

compressible flow as (see for example ref. 11, page 30, eq. (3.33)),

M
2

-- l1- (uS 2 +v* 2 +wv) (1+ i [- (V*2 + v* + w*2) + .. (42)
pS s s +-

Only the first Mach number term is shown since successive terms are much

smaller. Since in the present work M.s is less than 1.0 and the pertur-
bation velocities in equation (40) are small compared to the free-stream
velocity, this first Mach number term is much less than one. Consequently,

in the present work it has been ignored and the following incompressible

expression used for the pressure coefficient

Cp= -(U +V + W*2) (43)
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Consider the following sketch

plu

cS

C I

which is the cross section of the store at any xs. The quantity Cp,u
is the pressuro xc..fficient at the location of the upper surface of the

store (s = ir/2) and Cpi 3s the pressure coefficient at the location of

the lower surface (0, = -7r/2) of the store. Let the assumption be made that
5 the vertical pressure gradient is linear and that there is no lateral

gradient. Thus, as a function of 0s

6C = (C - C u)sin 0 (44)

and the buoyancy normal-force coefficient acting on an element of
s urface area is

d NBY \ AC sin d, a dOs dxs
B2 a

Sd(C N) B - . . (4 5)

From equations (44) and (45) I
d(CN)BY= a(Cp - C 7u) 2 sin2 OsdO

dx 2~ 2f si
ds SR 0

'- 3, (46)
2 s R

and finally

i-s

(C j (C, - Cp1 u)a dxs (47)
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In a similar manner the pitching-moment coefficient due to buoyancy is

found to be

_r I -18

(CM) BY Y I2SR-Rf (Xs'cg - Xs) (C, - C )ui dxs
mBY R R Pl ptu s(8

0

These two integrals are to be evaluated numerically using calculated
values of C and C;pu as a function of xs.

6.2 Angle of Attack Force and Moment

Let us now derive the normal force and pitching moment due to angle

of attack. To do this, use will be made of the method presented in

reference 12. In that work it was found that for axisymmetric bodies in

uniform flow the gross normal force and pitching moment could be calcu-

lated quite accurately for a wide range of shapes by assuming that poten-

tial flow applies over the forward portion of the body up to a location

where viscous forces become important. This location did not change with

angle of attick and is correlated in reference 12 as a function of the

position of the maximum negative rate of change of cross sectional area.

This correlation is for a body in uniform flow. No correlation of this

type for axisynunetric bodies in nonuniform flow is known.

Using the method of reference 12 but accounting for the nonuniform

flow field, the normal force and pitching moment are made up of two

terms, the first calculated by slender-body theory, or potential flow,

and the second calculated by viscous crossflow thecry. Slender-body

theoty is .tssumed to apply over the forward portion of the body to some

point, xs o, where the viscous forces are important. From this point to

the end of the body, the force and moment are calculated by viscous

crossflow theory. Thus, the normal force due to angle of attack CN'a is

c /[d(C d(CNcF (49)C S°(N sB dxs + Ndx dx(9

N, f = Sj x ' - S- dxs
x

(C + (CNCF (50)
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A similar expression can be written for the pitching moment. The expres-

sions for the force and moment will now be derived.

6.2.1 Slender-body force and moment

It is net difficult to determine the forces and moments on a slender

body in a nonuniform flow field using slender-body theory. We have

determined the buoyancy contributions for the case wherein the body is

cambered to conform to the streamlines of the nonuniform flow field.

The flow field can now be made uniform retaining the cambered body, and

the forces and mome its associated with apparent-mass effects can be calcu-

lated. Let us consider the shape of the cambered body.

Vhe local angle of attack in the vertical plane is W*, and tile local

S-

sidewa-zh angle is V* within thie small-angle assizption. Let xs be the

distance to a point on the body axis and let C.s'g M Ys~g + iZ Sig be the
Alocation of the body axis at distance xm. Then we have

6.2.1~~~ lnerbd foc an omn

0 0

The flow pattern is then as depicted in the following sketch.

i z i T
V*'

paint Ys~

iS
W*s
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The complex potential can be written for the flow following the

results of reference 9, page 29

iWs - sg - + -sg) + a2
is,g' - sg)

+aV da l C (52)
dx- log ( -s,g

The complex force Y + iN can be very simply determined from che fore-

going complex potential by use of the following result from reference 9,

page 50. (The development in reference 9 assumes a unit free-stream

velocity, V . Hence, the I/V. factor in the first term of the following

equation.)
a

q N +S (xs)Csg (xs) + 2S(xs),' ,g (xs) (53)

wherein

S(x S) = 7ra2 (54)

and a, is the coefficient of the ,' term (simple pole) in the

Laurent expansion of the complex potential.

it is easy to show that

a = iW a" + a&'Vs - a - Vsg (55)

- S'= 2-a da (56)

. (v* + iW*) (57)
s,g s

With these relationships equation (53) yields

Y + iN = 2-ia'W* + 2 a-V* (58)
q_ s s

sý' that
C, N = -aW, (59)

sB =q SR SR
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C Y =~.~=2ra2V* (60)( 1 SB WS R S R S

In simple terms, the normal force up to axial distance xs depends only

on the body radius and local angle of attack at that station with a

similar result for side force. The values of the foregoing quantities
for the store can therefore be determined easily by evaluating equations

(59) and (60) at the separation location. It is of interest that no
coupling exists between normal force and side force. The pitching-moment

coefficient and yawing-moment coefficient associated with the slender-

body theory require a knowledge of the distribution of normal force and

side force along the external store and require an integration along the
body for their determination.

x
s SO d(

(C) SB - x )dx
(Cm)SB =TRJ dX s'cg s s

0

x xS ,O d(a 2 W*)
2(x 2x dx (61)

s R R fcg s dxs s

0

Similarly for yawing moment, we have

x
sS,0 d(a2V*)

(C) SB 2 x -x dx (62)n SB SR fs,cg s dx s
RR s

The integrations in equations (61) and (62) will normally be taken from

the store nose to the separation location, xs,o*

It is noted that a positive normal-force increment in front of the

store center of gravity causes a nose-up pitching moment, and a positive

side force in front of the center of gravity causes a nose-right yawing
moment. The directions of these moments correspond to their positive

directions.

A further point of interest is worth noting. It would have been

possible to consider that the flow in planes perpendicular to the axis
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of the store obeys Laplace's equation, and that the upwash and sidewash

velocities vary along the store ]ength. If the potential is constructed

on this basis and the body pressure coefficients determined from the

unsteady Bernoulli equation, integration of the body pressures to obtain

the forces yield both the slender-body results just obtained plus the

buoyancy results. In this case the buoyancy force is given by

s dW x

'.(C) 2Y a2 - (3N By = R aI a dx s (63)
0

Equation (47) has been used in the buoyancy calculation rather than equation

(63).

6,2.2 Viscous crossflow force and moment

Let us now derive the crossflow normal-force and pitching-moment

coefficients. It should be pointed out that for nonuniform flow fields

this method is untried. For the present application it may have to be

modified when data become available to check the method.

N

F

a s

y~V*

S• •s

Referring to the sketch, we have from crossflow theory (ref. 9, p. 85) that

dFCF V 1 " V*• cd (2a) (64)

dx 2 s cs c

where cd the section-drag coefficient of a cylinder normal to the
C

free streim. That is,

c - drag per un±t length
q (2a)
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so that in coefficient form

d(CN) CF 1 dFcP
SV2 - s sin

s , P V% SR s

cd
- - 2aVC*W*
SR Cs

Thus, integrating from the separation location to the end of the store

2cc Is

(cN) f I aV_*W* dxs (65)

(Cm~~ CF SRi

Xs,o

and similarly

2 Cdc i

= % CFf (Xsg -X) aV*W•dxs (66)

In the present work Cdc has been taken equal to 1.2.

6.3 Empennage Force and Moment

The remaining forces and moments acting on the store are those
produced by the empennage. The components of these quantities due to

angle of attack and damping are not calculated separately. As was done

for the body damping, the pitching rate of the store is added to the

velocity field and the total forces and moments calculated. The
velocities at the x5  location of the store empennage centroid are

calculated using equation (40). The combined angle of attack, the angle
between the store's longitudinal axis and the local velocity vector, at

the empennage centroid is

t aj" (an -E J)( 6 7 )
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The slender-body theory normal force is

(CN)E = (KE + KB) -a-T ac sin s (68)

where K and K are interference lift ratios. The quantity KE is
E B

the ratio of normal force developed on the tail panels in the presence

of the body to that developed by the tail alone. The quantity KB is

an analogous ratio to specify the normal force developed by the body in

the presence of the tail panels. These ratios from reference 9, pages 119

and 120, are given by

KE 12? + j+ sin-' --2 - 2 2
,( - 1)2 / /

(69)

K B + ? - KE (70)

where N = s /aE. The quantity sE is the empennage semispan and aE is
E E*

the body radius at the x location of the empennage centroid. The
Squantity (•C z)T is the lift curve slope of the tail alone and is to

be specified. The tail alone is two tail panels joined together without

the intervening body. The angle s is shown in the following sketch.
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Equation (68) can be written

(C N)E =(KE -Fa KB c~Yw (71)

The pitching moment due to the empennage i.s

S(Cm)E _- sc t cen(( E R (CN)E (72)

In the above expressions

d •-• (CN)T d a (73)

I p •VsS R

i 7. ADDITIONAL INTERFERENCE FORCE AND MOMENT

In section 6, primary interference forces and moments on a store

under an aircraft have been calculated from slender-body theory using

the calculated downwash and sidewash of the wing-body combination at the

store axis. The interference effect of the store source distribution

on the wing was accounted for in the attached condition and was not

t changed thereafter during the trajectory. The effect of the wing on the

store was thus accounted for as in the first step of an iterative pro-

cedure. There is additional interference due to the presence of the

pylon nd due to the velocities induced at the wing by the store flow

fields associated with downwash and sidewash. There is presently no

simple method for determining the additional interference loading.

Accordingly, a numerical method is developed herein for determining the

additional interference effects, which are directly additive to the

effects already calculated. Only the case of a single store under the

wing is considered, although the techniques employed can be used to treat

other cases. The additional interference is expected to be small so that

slender-body theory should be sufficiently accurate for its determination.

The methods available for solving the additional interference problem

include conformal mapping techniques and numerical vortex methods. It is

probable that with a considerable analytical effort, some exact solutions
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can be obtained using conformal mapping and slender-body theory. However,

we have chcsen to use numerical vortex methods because of their compatibility

with the computer program of the previous sections, the simpler analysis

required, and the possibility of applying them more easily to a wide range

of interference problems.

The basic approach to the present interference problem is to consider

first the nonuniform flow field which exists near an airplane at the store

location with the store absent. If we now imagine the store to appear,

its flow field induces velocities normal to the pylon and the wing which

can be cancelled by bound vortices in all components. The forces on the

store due to the bound vortices represent the additional interference

effect. Since we have computed the forces on the store alone in the non-

uniform flow field using slender-body theory, it is consistent to use

slender-body theory to determine the interference effects. This approach

allows solution of the interference problem without iteration. The flow

is solved in crossflow planes normal to the store axis, and as many planes

can be used as necessary to determine the store load distribution

accurately. As opposed to a three-dimensional approach which tries to

account for all such crossflow planes simultaneously, the present

approach has the distinct advantages of less computing time and less

computer storage.

In the theory to be developed in this section, both primary and

additional interference terms are included so that the theory is complete.

The present approach is applicable to a finless store in its entirety or

to a finned store up to the beginning of the empennage. The empennage is

to be handled as described in section 6.3. In case flow separation occurs

on the store, there is the possibility in the present method of including

the cesulting shed vortices in the calculation as free vortices which

induce additional interference forces on the store. The only question is

with respect to the strength and position of the store vortices. In the

present analysis, only normal force distributions are determined, although

side-force distributions can easily be obtained from the method.

Not all of the mathematical details of the derivation will be

included. They are contained in reference 13.
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7.1 Axes and Conventions

In the analysis several different axis systems will be used. First

consider a plane fixed in the stationary fluid normal to the velocity of

the store as it passes through the plane (fig. 23). The cross section of

the store in the plane at any time t is an ellipse, the center of which

is the origin of the x,y,z coordinates. The x coordinate is aligned

with the velocity, VO, and the axes y,z lie in a plane normal to x.

Let the store nose pierce the plane at t = 0 at the origin of the axes

-Xo17 0T ,which are fixed to the plane and coincide with the positions of

x,y,z at t = 0. The x7y,z axes are attached to the nose of the store

with F aligned in the V., direction and 7 and i being parallel to

y and o0.

Another set of axes used in the analysis is a set of axes XsYsZs

which are symmetry axes of the store. These axes are obtained by pitching

the system about 7 by an angle a, and then yawing the system about the

new vertical axis by -ý as described in reference 9, page 4. The cross

section of the store as seen in the ys-Zs plane is a true circle for a

body of revolution.

It is noted that the store cross section in the fixed plane has a

vertical downward speed +W, and a lateral. speed V to the left given

by (for small angles)

W = av,

V = -OV

The sign conventions of a and P are such that the store shown in

figure 23 is at positive angle of attack and negative angle of sideslip.

Let the velocity components in the xyz system be UV,W with

corresponding perturbation components u, v, and w. Let u, v, and w

be the perturbation velocity components in the xslysyzs system. If th:

pressure coefficient is defined as

C P - (74)
p

4 -ý



then the pressure coefficient on the basis of slender-body theory is

C -2 (7)
V=

or in the xs,Ys,Zs system

u-2 u- v + w) (v2+ (76)
p V• 00VC

7.2 Formulation of the Interference Problem

Consider a wing-body configuration which may have a single pylon-

mounted store beneath a wing panel. Take a cross section through the

store normal to its axis of :otation shortly after drop. The cross

section will have the following appearance.

-t +S

_ _ _h

aI Yz s

e -4 y s 4

* For the short pylons on which such stores are mounted, we will neglect

sweep of the pylon leading and trailing edges so that we are dealing

principally with cross sections of the type depicted above. The portions

of the wing panel extending to the left and right of the store will gener-

ally be of unequal span. The velocities V and W are related to the

local angle of attack and sideslip of the store in the crossflow plane in

question. :hese angles of attack and sideslip are due in part to the

downwash and sidewash induced at the store by the wing-body combination

(without the pylon and store present) and to the angles of pitch and yaw
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of the store itself. These latter angles are due to the store dynamical
motion or to it3 o'ientat on on the pylon in the attached position.

In section 6 of the present qtudy, the lift and moment on the store
were determined by placing the store in the wing-body flow field and
calculating its reaction by slender-body theory. The empennage was
handled by linear theory. The store thickness effect was represented by
a distribution of three-dimensional point sources on its axis, and the

effects of \, and W were handled by slender-body theory. Most of the
effects of the wing on the store are properly accounted for in this manner.
However, neither pylon interference nor the interference on the wing due
to the store flow fields associated with V and W are accounted for.
In this section we will account for these additional components of the
total interference field in a way which avoids iteration. Also in the
analysis we will include store source effects in a way which will permit
accounting for them as a function of distance from the wing without
redoing the entire wing loading calculation at each step.

The basic flow around the store is due to the nonuniformity asso-
ciated with the distributions of V and W along the store and the
sources associated with changing body cross section. To fix ideas, let
us write down the complex potential for this flow field in terms of the
complex variable a. The complex potential for the perturbation velo-

cities v and w is

W i a + Vd+ aV _log a (77)

The perturbation velocities in the ys-Zs plane due to this flow are

dW s Wa2  Va2  fda 1
vs -iws r- -i + aV.- (78)

d2 02 dx a

These are thus components of the store velocity field associated with V,
W, and da/dxs which produce velocities normal to wing and pylon.

Because of the normal velocities, a distribution of bound vorticity
is produced in the wing and pylon which just overcomes the velocity compo-
nents of equation (78). At the same time an image vortex system is intro-
duced ins~le the store to maintain its cross sectional shape unchanged.
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Consider only one vortex external to the body at point ai. It requires
an imace vortex of opposite sense at a point internal to the circle,

a2/7i. In addition, an image vortex of the same sign is placed at the
center of the circle co keep the circulation at infinity unchanged. As

a result the complex potential for N external vortices is

N
Wi rlol (a - Gi) - log - + log U1 (79)

rF(1) = -71 Fi I i a- i )

The Fi vortices are placed over the wing and pylon in s:ch a way
as to counteract the velocities as obtained from equation (78) at certain

control points.

On the wing and pylon equation (78) yields the following perturbation
velocities due to the store. On the wing a = ys + ih so that

W(y _ h2) 2Vhys aV h da
a W - h(2 S )Vy (8d;)

(hW2 + y2 )2  (h2 + s?)2  2  2)
(ho( (h• + YS)

On the pylon = izs so that

ps) -Va 2  
(81)Vp(s) -z 2

s

These velocity distributions on the wing and pylon are to be cancelled
by the vortices asso,'iated ';ith W r(a).

7.3 Store Normal-i orce Distribution

To obtain the force on the store, we determine the pressure coeffi-
cient through the use of equations (75) and (76) and integrate the compo-.
nent of the surf;F:e pressure force over the surface of the store. It is

convenient to consider various components in the pressure distrinution.
Let us, vs, and ws be the perturbation components due to the store and
u1, Vr, and w be those due to the N extezaal vortices,

N N N
u r ui v= vi w . wi (82)

1---i i=1 i=4
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From reference 9, page 48,

2 2

so that the pressure coefficient (eqs. (75) and (76)) can be written in a

Mixed system as

- 2 + W2 N
VU V2 -

-2 UsVp 2 i

N fvi w. N v W. ww

i-iV V. V.~
1==1

N 2 + w2 NN 
v + w W .

i=l V00 i-i j-1 Vo-

The rate of change of r-,ial force with x s can then be obtained by

integrating the above equat'ion around the surface. Th~us,

27r

s 0

or

V. + W

1z sivn+W )

+ df ---- L sin & de + f V sin e dO

V . OD

(eq. (86= cont. on next page)
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N 27r[(.s

v f ( +( lj ssin 0 d e

i=1 o

N N 7 r1 + E KVXk ) + sine dG (86)

i=1 j=1 0

i j

The first two terms in this equation are the primary interference asso-

ciated with the nonuniform flow field and the last five are the additional

interference due to the vortex system.

The integration of equation (86) with respect to 6 is carried out

in Appendix I. The resulting normal-force distribution is

I dN 1 dNs dN1 _ ds 1-7s (87)
Pov\a ds P V2 a dS +dXS

The first term on the right-hand side is given by equation (1-13) as

1 dNs d [ We )

1 - =N 27r~ ( (88)

pOcVa 5 5 00"

The second term, from equations (1-36) through (1-38), is

dN = d acos i daiSV2a dxs 2-, l • cs ' •. -rx' .Ta•T) co'sid

N

27 ap .Fi V cos 2,, + sin 2.$I
j1 3 KVa0 i VA

(eq. (89) cont. on next page)
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N2

+ a3 E a sin 0
2 . ri(r2i - a 2 ) (iraV.

N-27r a-I [ sin •i+ -R- sin •j+ ?P(a~rijrjS¢i'Oj

E Z *r i +j=1 i=j+i

'i aV (89)

where

*(a,rirj,0i,2j)

a r - rý) a2 + r2) rj sin 2- aa + r3)ri sin Oi

= + 2rirj sin (0j- i) [(r - a 2 )rj cos 9j - (r3- a2 )ri cos 0i]1 (90)

and ? in the above expression is

= (r" + r(a4 + r'rý) - 2(a2 + rý-)(a + re r r Cos

IX ~~ 1~~ 3a rJ, 1 ) ri~ c s 0

+ 4a2r~r' cos 2 (0i- o-) (91)

The method of calculating the. unknown vortex strengths P. is given in
1

Appendix II.

7.4 Boundary Condition for Store U'ider Pylon of Wing-Body

Combination

For the case of an airplane represented by a wing-body combination

with a number of external stores under wing or fuselage, the method of

establishing the flow field has been presented in sections 4 and 5 of this

report. Let this flow field be described by a three-dimensional potential

03D* Consider a cross section of the wing-b idy combination with a phantom

pylon and a phantom detached store.
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The potential 03D includes -he effect of wing angle of attack, camber,

twist, as well as thickness. It also includes the effects of wing-body

interference and the volumetric effects of any other stores under the

aircraft.

There are associated velocity components V and W at the center-

line position of the phantom store. Besides the component due to 03D'

these velocities include components due to translation of the store

center of gravity, and angular velocities around the center of gravity.

These factors are currently accounted for as described in section 6.

we now consider the phantom store to materialize and to add flows to the

field associated with da/dx, V, and W. Also, we let the phantom pylon

materialize and it induces a further flow due to the fact that it is

subject to a sidewash field associated with 03D and may have camber

and twist of its own. The additional flows due to the store and pylon

are associated with a slender-body interference potential, 0SB" The

complete potential for the prcblem is then

Oc = 03D + 0SB (92)

This scheme of setting up the potential has the advantage that the basic

three-dimensional field is determined once, and need not be computed for

each new position of the store during the trajectory. It is feasible to
compute the changing part of the field due to the changing position of

the store by this means because a small -atrix is needed for a cross-

flov,- calculation by the present method (of the order 10l0c) rather than

that for a complete airplane configuration including pylon and store

(of the order 200x200).
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In specifying the boundary conditions on the wing and pylon due to

OSB' we must consider any normal velocities not already cancelled by
03D* On the pylon, for instance, we have the sidewash velocity induced
by 0 3D' any effects of camber, twist, or incidence of the pylon, and
the store flow field associated with V. The store flow fields asso-

ciated with W and da/dx have no component normal to the pylon. Thus
* on the pylon, the boundary conlitior is

30SB a2 (3
S= V3 D + ipVc + V a2 (93)

V3D ' sidewash induced at pylon surface by 0 3D

i - local incidence angle of pylon including
effect of camber, twist, and incidence

V - V3D at store axis

At the pylon control points the boundary condition is thus

Svp(k) = V3D(k) + ip(k)V- + Va2  2; k = 1,2,...,m (94)
[h -L (2k - 1)1

With regard to the right wing panel, 03D includes any normal velocity
on the wing due to its own incidence, camber, twist, and thickness, as
well as any fuselage effects. If the wing angle of attack is aw' then

the normal velocity VJaw is accounted for by 03D* The velocity 1':
determines the doublet strength on the store axis, and the normal velocity

induced at the wing surface due to this doublet is the perturbation velo-
city which must be cancelled by the interference vortex system. The store
flow field components associated with V and da/dxs also produce normal
velocities at the wing which must be cancelled. Accordingly, we have on
the right or left wing panel

"da
0SB Wa' (Y - h2 ) 2Vaysh aVc+ x -h- - + (95)

(y2 45 h2)2
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At the right wing panel control points, we thus have

-2Vah (~j29 -i) Wa2 C 2 (2j - 1) - h]

t42- (2j - 1)2 + h2] (2j - 1)2 + h2]

aV. dx

IS

+ 1,2,.. ,p (96)
s 2 (2j _ 1)2 + h2

4p2

and on the left wing panel control points

a- [-n (2g - 1)2 - h2
- +~)2ahG 2 1 _24

L(g) (2g - 1)2 + h (2g - 1)2 + h2]

[4n-' L4n'

aV da h
dx 5

S1 g ,2, .... ,n97)
t22

-7 (2g - 1)' - h2
4n 2  gl ~

These boundary conditionu, equations (94) , (96), and (97), are used

in equations (11-23) through (11-25) of Appendix II to determine the

strengths of the vortices.

7.5 Application of the Method to Conical Configurations

7.5.1 Boundary conditions

Since conical configurations can be utilized to illustrate the

importance of certain wing.-pylon-store interference effects, some c:alcu-

lated results for such configurations will subsequently be shown. The

boundary conditions will now be specified for such configurations.
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Consider a conical store at angle of attack a and angle -f

sideslip • with crossflow planes normal to the store axis as shown

1zs

V - -VCV ----- ~ Ys

Consider now the positions which are to be occupied by wing and pylon.

At these positions the store alone induces velocities by virtue of da/dxs,

V. and W. In order to determine the velocities normal to the pylon and

wing, consider the total potential for the store flow

"" =R.P.[V ( + + iW(-o + + aV. T log a

SS

da 1 (09)
,VB iW1 + w)+ aV2 dx a

On the pylon where a iZs$ we have

= v + A) (100)

The pylon control points have the coordinates (eq. (11-3))

s hp 2 -L (2k - 1) (101)

so that equation (100) becomes

=• ~~Vaý- , 12

vp(k) VV + k =12,.. (102)
h - i2k - 1)

Lp 2m
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This is the velocity to be cancelled by the vortex system at the m

control points on the pylon.

On the wing, we have the value of wB as given by equation (99), but

we also have a normal velocity associated with the potential term

Xs-V,7 - V2 - W2  unless the wing is parallel to xs. Consider a side

view of the conical configuration.

Pylon-\ Wing

x
s/-Stores

Neglecting V2 + W2  compared to V2, the normal component due to the

root term is -V.(dh/dxs). On the wing a = ys + ih so that

v- iwB--v l-2 (Y§;2~i~h

- iW a2  + h 2 )2 h)
(y + h

a2 (Ys - ih)

+ aV da s (103)
Ys h-

from which
da

-2Va 2 hy h a 2 (Y2 - h2) v dx-js h
B +(y1+ + Ll -- 104

h 2 + h)2 (Y+ + h2)2 2 + h(0

At the right wing panel control points (see eq. (11-3))

= S (2j - 1) ; j = 1,2,...,p (105)
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Thus the velocity to be cancelled by the vortex system at the p control
points on the right wing panel is

2Va 2h (p) (2j - 1) aV s
R(j) 12j _12+h2]2 (2j - 1)2 + h2

S 24

Wa S2 (2j _ 1)2 _ h2]

+ w + dh 2 h j-
1R 2 j _i)2 + b 1V d

4e (106)

At the left wing panel control points,

S• = t

Ys - 2 (2g - 1) g 1,2,...,n (107)

so that the velocity to be cancelled at the n control points of the left

panel by the vortex system is

2Va(2g - ) aV d- h
2Va(h (. ) (2 dx5

L(g) [2 (2g 1)2 + h 42] 2 2 (2g- 1)2 + h2

Wa - (2g - 1)2 - h2;

+ W + 4 V dh;_2(2g _ 1) 2 + h• 2]2 0 x

14n' (108)

It is of interest to consider the boundary conditions as composed
of three basic cases:

Case A: V =0 W = 0 da dh

dX 0 dx

Case B: V 0 W M 0 !La_ 0 d 0 (109)dx dx

dxdx

The first case yields quantities due to the basic asymnmetries, and
establishes the angles of zero normal force and zero side force.
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The boundary conditions associated with the three cases are

Case A; Basic Case

aV da
s dh

R(j) 2 - Vc dx
s4p2 (2j - 1)' + h s

aV dxsh (310)

wL(g) = 2 2 v dx
4n2 (2g - 1)2 + h'

Iv vp (k) = 0

Case B: Angle of Sidewash Case

2Va 2 h (.s) (2j - 1)
[ (2j - i)2 + h2

2Va 2 h ( n (2g - 1)
) [4n (2g - 1)2 + h2

V P(k) V + Va 2  
2

[h~ (2k - 1)]

Case C: Angle of Attack Case

se 2w ~W +Wa,:-[-I .p22j - 1)~ h2
WR(j) [W+ [S2 (2j - 1)2 + h22

Wa2 -t- (2g - 1)2 - h (112)
W I 4ný?

wL g)+= W -

4nt2 (2g - U). + hW

wP (k) =0
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For Case A, the boundary conditions are symmetrical about the
vertical axis, and a vortex system with mirror symmetry about the
vertical axis is to be expected for left and right panels of equal
span with no vortices on the pylon. For Case B, the vortex signs will
not change between left and right panels for equal span panels, and

there will be vortices on the pylon. The strengths will be equal on
left and right panels and proportional to the sidewash angle. For
Case C, the vortices will be similar to those for Case A. The physical
significance of these cases will subsequently be discussed further.

7.5.2 Calculative example
In order to demonstrate the calculative method and to illustrate the

nature of wing-store-pylon interference, a number of systematic calcula-

cross section shown below.

2s

~iJ ,

0•h

It is possible to show systematically the effects of the nondimensional
quantities h/a, s/a, and £/a on the interference for such configurations,
and thereby to shed light on the magnitude of the interference effects.

For a conical configuration in a uniform stream, the right-hand sides

of equations (88) and (89) do not vary with xs. Designating the part

associated with the vortex system as A, we have from equation (87)

dN
dx5  s + P.,V~aA (113)

If we let the conical configuration have a store base radius amax and

a length Is and use the store base area as reference area, then

= N C Ns m
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The quantity CN. is obtained from equation (1-13) and is found to be

Cs 2 2a (115)

Thus,

rN
is ai daCN N + 2 -r a raV. C i dx• = Cs amax sics id

N ii i
1=

+ 
2

raV. Cos 20i + sin 20i

• ri

+ aN a ri 2 sin
ri(r 2 - a2 ) 2raV., 1

. T7- raV j\27raV. sri r.
j=1 i=J+1

+ (ari'rj 0i' Oj (116)

The quantity V1 is given by equations (90) and (91).

The boundary conditions for conical configurations were developed in
the previous section, wherein three cases were differentiated. Case A
included all terms not proportional to a or 5; Case B included terms
proportional to 8 (or V); Case C included terms proportional to a

(or W). Case A determines the lift and side force at zero a and 5,

and is not as interesting as the other two cases.

Consider the angle-of-attack case associated with vertical velocity
W. The store alone has a normal-force curve slope of 2 for this case
based on its base area as reference area. The presence of the wing above
the store tends generally to dam up the crossflow above the store, and
thereby to reduce the normal force. If we designated the normal-force

coefficient of the store alone due to a as CNs) and that of the
store in the presence of the wing and pylon as CNs,pw(,)' we have
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C N 2a (117)

c 2a(1 + K) (118)
s, pw (a)

where

K N s.Pw(a) N s(a) (119)
a CN

The interference factor K has the simple physical significance that
a

it is the fractional amount that the store-alone normal force due to a

is changed because of wing-store-pylon interference.

Inherent in the foregoing physical interpretation is the assumption

that the nonlinear terms in equation (i16) have no net contribution to

CN for the angle-of-attack case. Since the vortex strengths are propor-

tional to W in this case, the last three terms of equation (116) yield

contributions quadratic in a. For angles of attack of the order of a

tenth of a radiar, the numeric:-! contributions from the nonlinear terms

generally total less than one percent of the linear term. Whether the

net contribution of tne nonlinear terms should be identically zero on
mathematical grounds is not known to the authors at this time. The

residual nonlinear contribution could be the result of approximating a

continuous vorticity distribution by a number of discrete vortices. In

any event, it is small for the magnitude of the angles expected in practice,

and it is therefore neglected.

A series of calculations has been made to determine how K variesa
with the nondimensional parameters h/a and s/a. Because the pylon is

a stieamline of the flow, no pylon vortices are required in the solution,

and K does not depend on i/a. Since we are replacing a continuous

vorticity distribution on the wing by a series of discrete vortices, the

accuracy of the numerical results depends on the spacing of the vortices.

The variation of K with h/a for s/a = 2 is shown in figure 24 for
a

two uniform vortex spacings. For most practical purpose!;, a vortex

spacing equal to a quarter of the body radius gives adequate results.
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To illustrate further the convergence of the method for calculating

K a systematic set of calculations was made varying the vortex spacing

,0or h/a = 1.25 and s/a =1 10. The following resvIts were obtained:

Vortex Spacing a

a -0.57101
2a/3 -0.56515

a/2 -0.56238

2a/5 -0.56072

a/3 -0.55958

2a/7 -0.55876

a/4 -0.55816

For this case, a vortex spacing as great is a bod-, radius gives adequate

rEsults for most practicel purposes.

The effett of h/a on K for various values of s/a is shown in

f.gure 25. For the limiting case s/a = 0, K is clearly zero. For the

i.mitir j case s/a = -, it is pr•..able that K 0- -1 based on the following

aigument. For a very large value of s/a, the floa under the central partof the wing is a stagnation region. Placing a store of radius small com-

pE. red to s in this region will produce no normal force on the store, so

.aat K will be -1.

-iynificant point in connection with the angle-of-attack case is

that no singularities arise. Such singularities occur when an external

vortex comes in contact with the store. It is noted in equation (116) that

t'Ce third term produces a singularity if ri = a. From symmetry consideia-

•ons, it is noted that the vorticity on one wing panel is equal and oppo-

ýzite to the other wing panel. Accordingly, no trailing vortex lies along

iae root chord of the wing. Thus when the store is in contact with the

wing, there is no vort.ex in contact with the store to produce a singularity.

:t should be noted that as soon as the left and right wing panels are of

unequal span or -s zoon as sidewash is introduced, the singularity arises.

For the angle-cf-sidewash case, the last three terms of equation (116)
".e quadrati: in 3, and the linear term has no contribution to CN. It

is convenient to normalize the 0' contribution to CN in terms of a

nondimen.3ionai normal-force ratio, K , which has a physical analogy with
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a crossflow drag coefficient. Corsider the side force on the store alone

due to viscous crossflow with crossflow drag coefficient Cd.

Ycf c Cd cp2 n (120)
c

For a conical body the area normal to the crossflow, Sa, is Isanax. It

is possible to put the normal force due to p2 NO, as obtained from

equation (116), into the following fozn

N= K (121)

The factor K has a simple physical significance. It is numerically

equal tu the crossflow drag coefficient which will yield a side force
due to viscous crossflow. This side force is equal to the normal force

tN 1-due to the angle of sidewash.

In figure 26, the value of K is shown versus h/a for s/a = 2

and i/a = 1 for two uniform vor-ex spacirgs on wing and pylon. It is
noted that good agreement occurs for a gap between pylon and store as small
as half a radius. however, as the gap gets smaller, the two results

start to depart significantly. The difference is associated with the fact

that as the lowest pylon vortex gets closer to tbe store, it approaches a

singular' y of the type previously discussed.

A systematic set of calculations has been made to see how K varies
with vortex spacing for the same case for which the K calculations were

a
made. The following results were obtained:

Vortex Spacing K0

a 2.2996
2a/3 1.6092

a/2 1.5043
2a/5 1.4892

a/3 1.4869
2a/7 1.4864

a/4 1.4864

For this case, with h/1. 1.25, s/a 10, and i/a = 1.0, a vortex spacing
of a/2 yields sufficiently accurate results for most practical purposes.
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An exact solution for 1, has been obtained for the case of s/a = and

i/a = 0 with the help of reference 14, page 174, example 25, It is of

interest to compare the values of K for this case with those obtained

by the present calculation method for s/a = 10 a3 a function of h/a.

The comparison is shown balow.

K 1

s/a = s'a = 10
h/a Exact Sclution Present Method

1.05 6.2285 7.5549

1.10 3.5992 3.6009

1.15 2.5090 2.4806

1.20 1.8978 1.8750

1.25 1.5042 1.4b640

1.50 .6550 .64724

1.75 .3658 .360.4

2.00 .2298 .22662

2.50 .1102 .10802

4.00 .0254 .0239

5.30 .0128 .0114
8.00 .0031 .00205

even for large values of h/a, where the difference in s/a may have -ie

effect, the results are closely the same. For small values of h/- where

the di2ference in s/a is of less significance, there is still very close

agreement except at h/a = 1.05. At h/a = 1.05, the effect of the singu-

larity at h/a = 1.0 in the present method is starting to make its influ-

ence fclt. The vortex spacing for the calculation was a/4.

The general nature of the flow is as shown in the sketch of figure 26.

High velocity flow through the gap creates a lower pressure there than at

the bottom of the store so that a positive normal force is developed.

As ths gap approaches zero, the lowest pylon vortex does not actually

touch the stDre because of the way in which the pylon vortices have been

distributed. The lowest v.ortex has been p]aced one-half of Lhe pylon

vortex spacing up frcm the py;lorn tip. This convention was followed for

both vortex spacings. No analysis was made to determine how the lowest

vortex should be located with respect to the tip, and the above conver-
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tion represents a first approximation. Refinement of this convention would

probably produce better convergence as the tip is approached.

Another theoretical point of significance is that the limit of the

present case as the gap approaches zero is not the same as the zero-gap

case. In the present case, the loading at the pylon tip falls to zero,

and as the gap approAches zero this condition is not relaxed. However,

if the gap becomes zero, then a lo ng can be carried acr)ss the tip of

the pylon. It appears that the positive normal force for the gap case

could change to a negative normal force for the zero-gap case. For the

purpose of calculating trajectories, we are interested in the gap case

because the gap opens up immediately whenever the store is dropped or

ejected. However, for determining attached-store loads, the zero-gap

case could be of interest in special cases.

Figure 27 has been prepared tc show how K varies with h/a for

constant values of s/a. It is intuitively clear that after s/a reaches

a certain value for a fixed value of V/a, it would not be expected that

K would change significantly for further increases in s/a. Calculations

bear out this supposition in that going from s/a = 8 to s/a = 10 aid
not change the calculated values of K significantly. In the foregoing

sense there is an upper limit on K for a given value of h/a. The figure

illustrates the rule of thumb that K is 0.1 or les, if h/a =4 to 5

for a short pylon.

8. COMPARISON OF CALCULATED LOAD DISTRIBUTION, FORCE, AND
MOMENT WITH EXPERIMENT

This section of the report will present comparisons between the

present theory and experimental data in order to assess the accuracy of

the theory in predicting the store load distribution and also the total

normal force and pitching moment acting on the store. Comparisons will

first be made for the case of a single store under the wing of a wing-

fuselage combination. These will be followed by comparisons for a single

store under the pylon of a wing-fuselage-pylon combination. The last

comparisons will be for a TER grouping under the wing of a wing-fuselage-

pylon-rack combination.
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8.1 Single Store Under Wing of Wing-Fuselage Combination

Some calculated normal-force distributions for the case of a single

store under the left wing panel of a wing-fuselage combination are shown
in the next three figures. The calculations and the data shown in the

figures are for the configuration shown in figures 2 and 3 except that

the store is oue diameter, 0.75 inch, below the location shown in

figure 3(a). This is the same case as for the flow-field calculations

which were presented in figures 18 and 19. The data taken from Volume III

of reference 1 are shown by the circles.

Figure 28 compares the primary interference normal force distribution,

calculated as described in section 6, with the data taken at a Mach

number of 0.25 at two angles of attack. The angle ap is the angle at

which the store and parent aircraft were placed relative to the wind-

tunnel longitudinal axis. The angle a, was used in the calculations.

As was discussed in section 5.3.2, this angle ieflects a partial correction

for the wind-tunnel stream angle. Two theoretical curves are shown in

figure 28. The solid curve in the figure is the primary interference

normal-force distribution excluding store interfererce on the wing; that

is, the store volume is not allowed to induce a wing camber. For the

dashed curve, this induced camber is included. As can be seen in

figure 28, the effect of the ýnduced camber is small. At both angles of

attack, the agreement between the experimental and calculated distributions

is quite good.

The calculations shown by the dashed curves in figure 28 account for
store interference on the wing, but not wing interference on the store,

whereas the additional interference analysis of secLion 7 accounts for

the mutual interference between these two components. Figure 29 shows

the effect of including the additional inLerference, as calculated by the

method of section 7, in the load distribution. These are the same cases

as treated in figure 28. The solid curve. are the primary interference

load distributions. The store-induced wing camber has not been included

since the store source distribution has been included in the boundary

condition of the additional interference calculation, the da 'xs terms

in equations (96) and (97). The dashed curves iii figure 29 include the
additional interference. The only effect secn is i.i the ncse region of

the store. The effect appears to be much more pronounced for XP 0
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(fig. 29(a)) than for ap = 60. This is only because of the fact that the

large slopes of the load distribution curve which exist near the nose for

the ap = 60 case hide the change due to additional interference.

For a P = 0c, the additional interference calculation produces an

effect which is not seen in the data. Thi4 effect is due entirely to the

store source terms, the da/dxs terms, in equations (96) and (97). If

these terms are not included in the boundary condition, the change due to

additional interference cannot be seen on the plots of figure 29. It,

therefore, appears that the two-dimensional source term produces an

unrealistically large effect. The source effect calculated by slender-

body theory is not accurate for reasons subsequently discussed, and the

theory is modified accordingly.

The reason that the store source terms produce a large effect lies

in a known limitation of slender-body theory. The term in the complex

potential for the body source varies as log r and does not converge for

distances far from the body in contrast to the doublet solution associated

with body lift. However, an excellent approximation to the body volume

effects on additional interference can be obtained very simply by using

three-dimensional sovrces to represent the body and considering the wang to
be a reflection plane. Alternately we could consider the modification of the

wing vortex-lattice solution due to the effect of the three-dimensional

body sources on the wing boundary conditions. The effect of store volume on

the additional interference has been calculated both ways and compared.

Both methods gave closely similar results for the present case and were

negligible compared to the primary interference. Accordingly, the body

volume effects will he calculated using three-dimensional source distri-
butions. Except for stores very close to the wing they will be negligible.

Figure 30 presents comparisons between the primary interference theory

and data for the same case as that of figure 28 except that the Mach

number is 0.70. As in the Mach number 0.25 case, the calculations have

been made taking into account the indicated tunnel-empty stream angle.

The overall agreement between experiment and theory is not quite as QoOd

as that shown in figure 28 for a Mach number of 0.25. This is consistent

with the results of the flow-field survey comparisons of figures 18 and 19

where it was found that better agreement was obtained for a Mach number of

0.25. The effects of tunnel stream angle on these comparisons should be

recalled.
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The primary interference theory is compared with the total normal-

force dnd pitching-moment coefficients as a function of angle of attack

in figure 31. This is the same configuration and store location as was

considered in the previous figures. Figure 31(a) is for a Mach number of

0.25 and figure 31(bý is for a Mach number of 0.70. At both Mach numbers

the calculated normal force is slightly high. This is to be expected,

since in both figures 28 and 30 the calculated load distributions were

generally above the experimental ones. The calculated pitching moment is
in good agreement with the data. Since the overprediction of the store

load distribution is generally around the store midpoint, the point about

which the moment is taken, this overprediction has little effect on the

moment.

8.2 Single Store Under Wing of Wing-Fuselage-Pylon Combination

Let us now consider the case of a single store below a pylcn

mounted at the 1/3 semispan position on the left wing panel of the

wing-fuselage combination of figure 2. The details of the pylon are

shown in figure 32. When mounted on the wing, the pylon centerline is

located at 40 percent of the local wing chord. The store location if it

were mounted on the pylon is shown in figure 3(a). The store location to

be considered, however, is one diameter, 0.75 inch, helow this location,

the same position considered in the previous section. The store details

are shown in figure 3(b). With the pylon present the store midpoint is

directly below the pylon centerline.

In Volume III of reference 1, load distributions are presented which

were measured both with and without the pylon present on the w~ng. By

subtracting the data obtained without the pylon present front that obtained

with the pylon on the wing, the incremental load distribution due to tne

addition of the pylon can be obtained. This has been done and the incre-

mental loadings are plotted in figure 33. Date are shown for two angles of

attack at a Mach number of 0.25, It can be seen front the two parts of the

figure that the effect of angle of attack is small. Also, there is quite

a large upstream influence of the pylon which the slender-body theory method

of accounting for the pylon, section 7, will not pxedict.

For ap = 2 6, figure 33(b), an additional interference calculatioij

has bean made to see what portion of the experimental incremental load

distribution is due to addiig a pylon of zero thickness. The
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result of the calculation is shown in the figure. As can be seen, only
a small portion is accounted for. It is felt that the primary effect

showing up in the data is one of pylon thickness which is not accounted

for in either the primary or additional interference.

Even though the pylon thickness effect changes the store load distri-
bution, its effect on CN and Cm is small. If the curves of figure 33
are integrated over the store length, the resulting ACN'S are approximately

equal to the 2os (two standard deviation) uncertainty of the data which was

determined in Volume I of reference 1. Since the curves of figure 33 are

fairly symmetrical about the store midpoint, the point about which the

moments are to be taken, small values of ACm are also obtained. These

results may not be true in general even though the present pylon iF

excessively thick. It thus may be prudent to include the pylon thickness

in the present prediction technique.

Another set of data for which comparisons between the present theory

and experiment will be made is contained in reference 15. The configura-

tion is shown in figure 34. This is the swept-wing model tested in

reference 15. The store is located at the one-third sem_npan approximately

18 percent of the local chord below the wing and is attached to the pylon.

Comparisons with the measured normal force and pitching moment will be

presented for both tail-on and tail-off stores. McKinnev and Polhamus,

in reference 10, also have made calculations to compare with the same data.

Their calculations were made using the flow field data of reference 5, which

were taken under a slightly diffarent wing-body combination, to determine

the nonuniform flow field in the vicinity of the store. In the present

work the flow field has been calculated by the methods described previously.

Comparisons with their calculations will be presented, not only for the

total normal force an6 pitching momert, but also for their components due

to buoyancy and angle of attack.

The calculations tc be presented are primary interference calculations

only. As was discussed in section 7.5.2, in connecrion with the conical

configuration, the addifional interference analysis is not applicable to t-.e

case of zero Vap between the store and pylon. In the present case, a very

small gap exists since tlbe store w•as tested in the carriage positacn wiith

the balance' supporced thtough the pylon.
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73fore presenting the normal force and pitching moment determined by

litegrating over the store length, it is of interest to examine the magni-

tuduc and distributions of the various components of the normal force over

the length of the store shown in figure 34. The distributions to be shown

are in figure 35 for the tail-off model at four angles of attack. At the

top of each figure is a sketch of the wing-pylon-store cross section at

the one-third semispan under the left wing, the semispan location where

the calculations were made. For the purposes of this comparison only,

the separation location has been assumed to be at 60 percent of the store

length, xs~/is = 0.60. This region is shown by the shaded area on the

store. This store, unlike the one for which the previous comparisons have

been made is boattailed so that flow separation over the aft end of the

store is to be expected. No method exists for determining the separation

location on a body of revolution in a nonuniform flow field. The method

of Hopkins, reference 12, which was mentioned earlier, applies only to a

uniform flow field.

An examinatin of figure 35 shows that both the buoyancy and slender-

body theory load distributions have regions where the loading is negative

and regions where •t is positive. The buoyancy distribution extends to

the end of the body whereas the slender-body theory component ends at

the assumed separation location. The component due to viscous crossflow

theory acts only downstream of this point.

"•'or all angles of attack, the buoyancy force distribution exhLbits

the same qualitative behavior. The loading near the wing leading edge

i2 negative and becomes positive under the mid-portion of the wing.

It Decomes negative again near the wing trailing edge. T)he sign of this

component of the loading changes as the sign of tne pressure gradient

across the store changes.

The slender-body theory loading curves are similar in behavior to

the, buoyancy curves except aheaci of the wing leading edge where, at

largc angles of at.-:ck, a large positive loading exists. The behavior

of the slender-body curves can be oxplained by examining the eqtuation

for te loading. From equation (59)

N(CN SB 2 d W*)
W-/ ) - d(x/. s s
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or
Sd(CN SBVI

dCS 27 _ W2 da + a 2

d (x/ J) s SR s d (x/ J) sd (x/1)J. Sx

The sign of the first term depends on the sign of W* as well as whether
S

the body is expanding or contracting. The sign of the second term depends

on the sign of the axial gradient of W*. Thus, negative loadings due to

slender-body theory can exist in regions where the body is expanding i f

(1) W* and dW*/d(x/A) are both negative.

(2) W* is negative, dW*/d(x/9). is positive, but term 1 is larger

in magiitude than term 2.

'3) W* is positive, dW*/d(x/i) is negative, and term 2 is larger

in magnitude than term 1.

It is also possible to have nonzero loading on the cylindrical portion of

the store because of the velocity gradient term, term 2. The store shown

in figure 35 is cylindrical from (x/i)s = 0.315 to (x/j)s - 0.617.

The viscous crossflow theory loadings are small for the angles if.

attack shown since froi,ý equation (65) it is proportional to aV*W*. Thec s
product V'W* is proportional to the square of the local angle of attack.c

Let us now examine the normal force and pitching moment obtained by

integrating the load distributions presented in figure 35 plus those

calculated for two other angles of attack, -20 and 60. The results are

presented in figure 36. The nondimensionalizing length used in the

pitching moment shown in figures 36 and 37 is the store length, not the

maxirmum diameter used elsewhere in the report. The buoyancy cormponent is

shown in figure 36(a) with the results of McKinney and Polhamnus (ref. LO)

also shown. As was mentioned previously, their calculations were made

using experimental downwash data from reference 5. These data were taken

under a slightly different wing-body combination, see figure 9, from

that shown in figure 34. The present calculations are entirely theoretic3l.

The two calculations are in good ag.r:eement for both normal force and

pitching moment.

A similar comparison is presented in figure 36(b) for the angle of

attack component, that is, the sum of slender-body theory and viscous

crossflow theory. Calculations using the present method are shown for
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three assumed locations of separation. The results show the importance

of knowing the separation point location in calculating the normal force,

particularly at sxnall angles of attack. It is not nearly as important

in calculating the pitchinq moment since the region over which the normal

force is affected by shifting the separation point is near the center of

moments. For a particular value of the separation location, the present

itormal-force calculation coincides with the calculation of reference 10.

It is not stated where separation was assumed in the calculations of

~r:rence 10. The pitching-moment calculations, however, do not agree.

The reason for this is not understuod. The presence of the pylon was also

neglected in reference 10 since the experimental flow-field data used there

were obtained under a wing-body combination without a pylon.

The total normal force and pitching moment, that is, the sums of the

buoyancy and angle of attack components, are shown in figure 36(c). Also

shown are the calculations of reference 10 and the data from reference 15.

For the inttrmediate assumed separation location, x so/is equal to 0.47,

the present calculations agree fairly well with the experimental data.

The compdrisons between the total predicted and measured normal force

and pitching moment for the external store with fins are shown in figure 37.

Again, the theory shows an effect due to location of separation on the

calculated normal force. In fact, these differences are precisely those

shonm in figure 36(c) for the store without fins since the calculated

contribution of the fins does not depend on position of separation. For

the intermediate position of separation, the normal-force theory and

experiment are separated by a small increment up to about 60 angle of

attack.

Above this angle of attack, the method overpredicts the tail contri-

bution by an amount that increases as the angle of attack increases. In

other words, the tail effectiveness decreases as the angle of attack

increases. This nonlinear effect could well be the result of operating

the tail in the presence of body3 vortices associated with viscous cross-

flow. Methods for calculating this effect are known for uniform flow.

For the present case of a store in a nonuniform flow, an approximate

method should probably be developed to account for body vortex-tail

interfereince. Met'od- for including such interference are available in

refer"
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The comparison between total moment coefficient as calculated and as

measured for the store with fins is in good agreement up to about 60 angle

of attack. For higher angles, there is less nose-down moment developed

experimentally than predicted. This result is consistent with the fact

that the tail normal force has been overestimated by a theory which

neglects body vortex effects on tail effectiveness.

8.3 TER Stores Unuer Wing of Wing-Fuselage-Pylon-Rack Combination

An illuminating comparison can be made between the primary interference

theory of section 6 and the data of Volume III of reference 1 for the incre-

mental load distribution due to any stores remaining on the TER rack.

Consider the TER grouping as shown in figure 20 and let us determine the

incremental load distribution on store number 1, one store diameter below

the position shown in the figure, due to the addition of stores 2 and 3

to the rack. Data are nrasernted in Volume III of reference 1 with and

withouz these stcres present so that a subtraction of the two load distri-

butions give the incremental loading due to the stores. This has been
done, and the data are plotted in figure 38 for two angles of attack.

Note that there is not a large change with angle of attack.

Also shown on the two parts of the figure are curves calculated

using the primary interference theory of section 6. These curves were

obtained by first calculating the loading produced by the velocity field

due to fuselage volume, wing thickness, wing vorticity distribution

including store-induced camber due to all three stores, and the volume

distributions of stores 2 and 3. The calculation was then repeated

excluding stores 2 and 3, including the wing camber induced by them, and

the two load distributions subtracted. The resulting incremental load

distribution is nearly independent of angle of attack since it is due

primarily to the velocities induced by the volume distributions of

stores 2 and 3, which are not functions of aigle of attack. It can be

seen from figure 38 that the incremental load distribution is predicted

quite well at both angles of attack. The dominpnt store-store inter-

ference effect is clearly due to body sources.

The largest differencez between experiment and theory occur at the

aft end of the store. This zegion is influenced by the shape used to

model the wakes of stores 2 and 3. In the present calculations, the

wake was assumed to have the same shape as the store nose; that is, it
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was taken to be an ogive 0.125 foot long (see the store details in

figure 3(b)). If it had been taken more slender, then the values of

:,dCN/dxs near the store base would have been reduced. For blunt-based
stores in TER or MER grouping, the modeling of the wake is, therefore,

important.

Similar comparisons to those of figure 38 are presented in figure 39

except that the incremental load distribution on store 2 due to store 3

on the TER rack are shown. Store 1 is not present and store 2 is one

diameter, 0.75 inch, below the position shown in figure 20. Again, the

experimental distribution does not change much with angle of attack and

is predicted quite well.

9. EXPERIMENTALLY DETERMINED MER INTERFERENCE EFFECTS

It is clpear that the interference effects described in the previous

section for TS-configurations also exist as a large effect in MER

configu~rations. However, there is in addition the interference between

the frot three stores and the rear three stores. Data are presented in

Volume V of reference 1 in which the various interference effects asso-

ciated with a multiple ejection rack (MER) installation have been isolated.

This was accomplished by measuring forces and moments on a store in a

fixed position relative to the wing-fuselage combination and building the

remainder of the configuration up component by component. The wing-

fuselage combination used in the tests is shown in figure 2. The stores

are located as shown in figure 40(a) when in their carriage position on

the rack. The details of the stores are shown in figure 40(b). The

pylon details are shown in figuce 32 and the MER rack details in

figure 41.

On the following fi.gares, abbreviations have been used to designate

the various aircraft cononents. They are

WB wing-fuselage

P pJon

M Mý- rack
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The numibering system used to identify the six stores is shown in the

following sketch as is the fin orientation.

2 3 56

1450

Front grouping Rear grouping

The various stores will be designated as Si, S 2 ) etc.

Data taken using finless stores are presented in figure 42. The

finless stores used are identical to the finned ones shown in figure 40(b)

except that the fins have been removed. Increments in normal force LC N
and pitching moment 6Cm are plotted against angle of attack for a Mach

number of 0.40. In figure 42(a), data taken on MER store number 1 are

presented. Similar data are presented in figure 42(b) for store number 4.

These stores were located 0.375 inch below the position shown in figure 40(a)

when data were taken.

Let us first consider the store number 1 data shown in figure 42(a).

The increments plotted were obtained by differencing the data obtained

with two parent aircraft contigurations. Thus, t:,ie circles indicate the

effect caused by adding the wing-fuselage combination to the flow field.

Similarly, the squares show the change caused by adding the pylon; the

diamonds, the MER rack; the equilateral triangles, stores S2andS.

and the right triangles, stores S. and S.. It can be seen that the

largest interference effects are caused by the wing-fuselage and stores

S2 and S.. The smallest change in force and moment is caused by the
pylon. Since the wing and fuselage tend to align the flow with the

fuselage, the store sees a smaller angle of attack than when it is in the

stream by itself. Thus, the normal force on the store and the resulting

pitching moment are reduced. The two stores S 2 and S 3  produce an

effect similar to that seen in figure 38 for the TER racks. This is to

be expected, since the MER rack is really two TER racks a:7rangec1 one
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behind the other. If the curves of figure 38 were integrated, we would

find a positive ACN but because of the negative loading at the nose the

moment about the store midpoint would be negative. The addition of stores

S5  and S. produce a downwash over the aft end of S, since they are

above and behind this store. This causes a negative ACN and because this

force is primarily generated on the aft end of the store a positive or

nose-up pitching moment is produced.

Data taken on store number 4 are shown in figure 42(b). Again it
is seen that the wing-fuselage and the two side stores in the same

grouping, in this case S5 and S6, have the largest effects. The front

three stores produce no change in normal force; however, they do produce

a negative increment in pitching moment.

Let us compare the effects of S5 and Se on S1  with the effects

of S and S. on S4 . The stores are nearly symmetrical fore and aft

so that the source distributions were nearly asymmetric fore and

aft. Accordingly, the downwash produced at a point at a given distance

in fror't of the trailing edge of store Si by S5 and S6 will be equal

and opposite to that produced by S2 and Ss. the same distance behind the

leading edge of stoce S4. Such distributions will produce equal normal-

force increments in the two curves, but opposite moment increments. Also

the increments should not vary with angle of attack. The measured data

exhibit these characteristics fairly well when consideration is given to

the fact that the stores are not precisely symmetrical fore and aft, and

in one case we are looking at the effect of adding S, and S,, and in the

other S., S . and S. Also, any effects of the wake entrainment would
2'3

be present in one case but not the other. Based on these observations,

it appears that the induced effect of one set of these stores on one of

the other trio can be explained by three-dimensional source distributions

neglecting wake entrainment.

In figure 43 data taken on the finned store shown in figure 40(b) are

plotted against angle of attack. Data taken on store number 1 are presented

in figure 43(a) and those taken on store number 4 in figure 43(b). The

sto:s are located in the same positions as they were in the previous

figure, that is, 0.375 inch below the locations shown in figure 40(a).

For both stores S, I'nd S4 , the addition of the wing-fuselage-

pylon-MER configuration to tee flow field adds a negative increment in
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normal force over most of the anglo-of-attack range. As in the case of

the finless store, this is caused by the fuselage and wing tending to

align the flow with the fuselage axis and thus reduce the angle of

attack which the store sees. At small angles of attack a stabilizing

moment increment is added while at large angles a destabilizing incre-

ment is added. This later effect is caused by the tail fins operating

at a reduced angle of attack.

Adding the two side stores S and S3  above store S., (fig. 43(a))

or S, and 5. above S4 (fig. 43(b)) produces t'he same effect, a

positive ACN and a negative AC m. The magnitudes of the effects are

nearly equal. This is the behavior expected from a TER grouping as was

discussed in connection with figure 42.

The effect of the two stores S5  and S. on store S1, figure 43(a),

is to produce a small negative normal-force increment and a positive

pitching-moment increment almost independent of angle of attack. Since

stores S. and S. produce a downwash at the tail of S1, the local

angle of attack is reduced which tends to reduce the stabilizing moment

contributed by the tail. The effect of the front three stores, S. S, 2

and S 3 on S4 can be seen in figure 43(b). There is little effect on

normal force and a small stabilizing moment increment. This moment

effect is not caused by the presence of the tail fins of store 4. A

comparison of the curve indicated by the diamonds in figure 43(b) with

the comparable curve for the finless store in figure 42(b), that given by

the right triangles, shows the &Cm's to be almost equal. Note the change

of scales between the two figures.

In the computer program, the effect of store volume has been included,

as it influences store-store interference in the TER configurations and

the MER configurations.

10. STORE TRAJECTORIES

In the preceding sections of this report, methods have been presented

which allow the calculation of the normal force and pitching moment acting

on a store at any point in the aircraft flow field. Utilizing these tools

a computer program has been written which will integrate the equation of

motion of the store to determine its location and angular orientation as

a function of time. For the present these equations are restricted to
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three degrees of freedom representing .iotion in a vertical plane parallel
to the airplane vertical plane of symmetry. The airplane is assumed to

bo in a straight uniform flight but may be climbing or diving.

In this section of the report, the equations of motion will first

be derived. Then the computer program will briefly be described and,

finally, a sample trajectory will be presented.

10.1 Equations of Motion

The equations of motion will be written in a coordinate system fixed
in the aircraft fuselage. This system will have its origin at the fuselage
nose and will move with the fuselage. The coordinate system is shown in
figure 44 as the ý,n system. The aircraft is flying at constant free-
stream velocity, V., and at a constant flight path angle, yB' relative

to the horizontal. The angle of attack of the aircraft, a B' is also
constant, At time t = to the store is located as shown J.n figure 44.

Its center of gravity is located at o and its axis is inclined at
some angle, 00) measured with respect to a line parallel to the fuselage

axis. Provision will be made for imposing an initial velocity relative
to the aircraft, Vo, and an initial angular velocity, 9o"

The equations of motion of the store for the nonaccelerating coordinate
system are:

m sF.

I 5  . =1 (122)
2 ." s R s sR

m F
s (123)

V v*'=.
Co2 2w1w S R

insk'- :, M

1 (124)

vsi

VS

The forces acting on the stoce are shown in figure 45. N is the

normal force actiny on the body and is the sum of three components
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Ns = NBY + NSB + NCF (125)

where

NBY = normal force due to buoyancy

NSS = nor.tal force due to slender-body theory

NCF - normal force due to viscous crossflow

For stores with empennages, an additional normal force is developed. This

is shown in figure 45 as NE. These forces are the primary interference

k forces and tha methods of evaluating them and their corresponding moments

were presented in section 6. From here cn1, the total normal force,

including the empennage force if an empennage is present, will be

designated N and the corresponding moment, M.

The remaining two fcrces shown in figure 45 are the zero-lift drag

force, Do, and the gravitation force, m sg. The zero-lift drag force will

be taken to always act in the vS direction ' the store center of

qravity.

Referring to figures 44 and 45, the forces can be resolved into their

components in the • and I directions to obtain

F = N sin e + D0 cos (aB + TB - ys)

+ msg sin (cB + 'YB) (126)

F - N cos e + D sin (aB + TB - YS)

- msg cos (a B + YB) (127)

Thus, equations (122) and (123) can be rewritten as

1 P V2 " RCN sin + CD cos (a +B sf 000 ,sND0 aB + -Y

+ g sin (aS + - ) (120)

79



and

.. ~S[
7s CN cos e+D,O sin (aB + yB - s

- g cos (aB + 'VB) (129)

Equation (124) can be written

1.v SR•R
1 M k2 CM (130)

Equations (128), (129), and (130) are a set of three second-order
differential equations which must be solved to determine the store motion

relative to thL moving aircraft. The six initial conditions are at
t =t

0

(131)

The values of ýo and go are determined by specifying the location of
the store center of gravity.

The initial pitch angle is obtained as follows

:' w+ is (132)

wherein the wing incidence relative to the fuselage axis, iw, and the
store incidence relative to the wing root chord, i.s, are also input data.

The initial conditions on the velocities are to be specified as an
initial rotational velocity, eo, positive in the nose-up direction, in
radians per second, and an initial velocity, Vo, in a direction normal
to the store axis and positive as shown in figure 44. Then

;'o = -VO sin Go

(133)

S= -Vo cos
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In the equations of motion certain other quantities, which are

constant with time, are required. They are

armax = maximum radius of the store

g = gravitational acceleration

k = store radius of gyration

rR£ reference length, taken as 2amax

m= mass cf the store

V = aircraft flight velocity

aB = the fuselage angle of attack

TB = the fuselage flight path angle

pm = the free-stream mass density

In addition, the reference area, SR' is needed. This is taken as
the maximum cross-sectional area of the store

S =7ra (134)R max

The last quantity which is not a function of time and which appears in
the equations of motion is the store drag coefficient, C DO. This must

DO,be specified and is deafined as

CDO D 135)
D ~ pV` SR

The remaining quantities in the equations of motion, V,s, Is, and

the normal-force and pitching-moment coefficients, are functions of time.

The store velocity a elative to the atmosphere is

v [ os o (VB -si a. + -'na (136)
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The flight path angle of the store, ys, is found from the vertical and

horizontal components of its velocity relative to the atmosphere.

Consider th-! following sketch (also see figures 44 and 45).

V 
a B

Horizontal

The :,j coordinate system is moving at a velocity V,,. The store is

moving in this • coordinate system a' velocities k and j. Thus,

the horizontal and vertical velocities of the store relative to the

atmosphere are

Vhor = V cos cos (TB + B - n •in (r B + 9)S(•37)

SV er = V sin TB - sin ('YB .+ UB) + Cos "' IB + aB)(37

The flight path angle, %s in figure 45, is then
t csnVveirt ( e +1s

tan Vhor /138)

The normal-force and pitching-moment coefficients are ýalcvlatcu i:, tV'ý

methods presented in section 6.

8
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10.2 Description of Computer Program

The computer program which calculates the trajectory of a store

ejected from an aircraft actually consists of three separate programs in

its present form. The three programs are

(1) Axisymmetric and two-dimensional source distribution program

(2) Vortex-lattice program

(3) Trajectory program

For a given body or airfoil and a given Mach number, the first program

needs to be run only once. For a given airplane-store configuration and

Mach number, the second program needs to be run only once. The third

program can be run for various angles of attack, altitudes, and store

initial dynamical conditions without rerunning the first two programs.

The extent to which the three programs should be incorporated into one

program depends therefore on the particular problem at hand.

The first program calculates the sorrce distributions which repre-

sent the fuselage and the stores, present on the a2rcraft, including the

one to be ejected. Each shape is specified by a series of segmented

polynomials and the program calculates and outputs the axial locations

of the sources and their strengths.

This program also calculates the two-dimensional source distribution

which represents the streamwise airfoil section of the wing at the span-

wise station immediately above the store to be ejected. The airfoil

section is also specified by a series of segmented polynomials, and the

program calculates and outputs the source strengths and locations.

The second program, the vortex lattice program, computes the bound

vorticity distributions which represent the wing camber and twist and

angle of attack. The input data to this program consist of wing geometry

and information which allows the program to locate the fuselage and all

of the stores relative to the wing. In its present form, up to nine

stores can be placed under the fuselage centerline and one wing panel.

In addition to the above data, the source distributions representing the

fuselage and stores are input as is the geometric camber and twist distri-

bution of the wing. The first calculation performed by this program is to

determine the velocities induced normal to the wing by the fuselage and

the stores. These velocities arc treated as an induced camber, and this
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camber distribution is added to the wing geometr. c twist and camber.

The program then solves for the two vorticity distributions. The first

cancels the free-stream velocity component normal to the wing surface
and the second cancels the twist and camber distribution. These vorticity

distributions are output by the program.

The Lhird program is the trajectory program. The input data to this

program consist of all of the data read into the second program, the

vorticity distribution output by the second program, and other information

required for the force and moment and trajectory calculations. The

additional information input includes the store mass, radius of gyration,

center of gravity location, location of the tail, tail semispan, and

tail lift-curve slope. Also, the aircraft fl.ght conditions are input

as are the store downward ejection velocity and the ejection pitching
rate..

r The-trajectory calculation is begun with the store at a specified

initial position. The velocity field is calculated over the store length,

and using this field the forces and moments are calculated. The velocity

field is found by adding to the free-stream velocity the velocities induced

by the fuselage, wing, and all other stores. The integration of the

equations of motion is accomplished by a standard numerical integration

technique with the velocity field and the forces and moments being

recalculated at each point required by the integration scheme.

10.3 Sample Trajectory

An example of the application of the trajectory program is shown in

fi gure 46. This figure presents a comparison of two ceiculated trajec-

tories with an experimeital trajectory taken from reference 17 which was

obtained using the captive trajectory system in the 4T Wind Tunnel at

AEDC. At the top of figure 46(a) is a sketch of the aircraft, an F-105,I showing the spanwise location of the store, an A/B45Y-4 spray tank. For

the case shown, the simulated aircraft flight conditions were a.i altitude

[ of 5,000 feet, horizontal flight, and an angle of attack of the aircraft

of 60. The wind-tunnel Mach number was 0.52. The calculations wore made

a s assucing incompressible flow and a free-stream velocity of 570 feet per

second. The full-scale parameters used in the tests are given in Table I

of reference 17. The same values were used in the calculations. At

ejection, the store is pitched down at an angle of -3.0° relative to the
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aircraft and given an initial downward velocity of 16 feet per second
and pitching velocity of -0.29 radian per second.

Figure 46(a) shows as a function of time the change in pitch angle

from its value in the attached position and figure 46(b) shows the change

in the vertical location of the store center of gravity from its

attached.position. The wind-tunnel data are shown by the circles and

two calculations using the present method are shown. One is labeled

"free flight" and the other "captive store."

Consider the free-flight case in which the store, initially at 30

incidence with respect to the free stream, is given an initial downward

velocity of 16 f.p.s. The angle of attack considering also the downward

velocity of the center of gravity is then 4.60. The initial value of

eis -0.29 radians per second and corresponds to a nose-down angular

velocity. The nose-down moment of the store tail fins corresponds to the

above angle of attack of 4.60, and a maximum pitch angle excursion of 90

is obtained before the oscillation reverses,

Consider now the captive store on a balance in the wind tunnel. It

is not feasible to give the store the downward velocity so that its

initial angle of attack is only 30, and the initial nose-down moment due

to the fins is less than in the free-flight case. The total angular

excursion is only about -5 in this case. When the angle of attack due

to the store's downward velocity was suppressed in the computer program,

the triect -y shown by the dashed line was obtained. This trajectory

is in agreement with that obtained in the wind tunnel (ref. 17).

This example illustrates the fact that the captive-dtore technique

cannot reproduce the free-flight angle-of-attack history of the store

and still maintai.n geometric similaxity between free-flight and the wind

tunnel.

11. CONCLUDING ,AEMRKS

This report presents the rssults of a study directed toward developing

a computer program for predicting the trajectories of external stores

dropped from airc:7aft of the fighter-bomber type at speeds up to the

critical speed. The stores can be located under the fuselage or under the

wing and can be grouped together such as in TER or MER clusters. The

present computer program is limited to three degrees of freedor; that is,
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'4ý

.tLort motion in a vertical plane parallel to the airplane vertical plane

cr sy.-u.etry. The airplane is assumed to be in non-maneuvering flight,

tu: nPay be climbinc or diving. The methods presented can be readily

!,zended to six degrees of freedom and maneuvering flight.

Nleth-ds are presented for modeling the fuselage and wing and the

Io•w fields calculated utilizing these models agree quite well with

pcpe.imental flow-field data obtained under wing-fuselage combinations.

Methods are presented for calculating the normal force and pitching

iroment due to primary interference and additional interference. Included

in the primary interference are those interference effects which are

Comiinant. The additional interference method includes minor components

cf the mutual interference between store, pylon, and wing. For the case

c:. a single store beneath a wing-fuselage combination, the primary

i:•terference method predicts t .e normal force and pitching moment quite

well. The additional interference method produces a negligible correction

if the slctý. source terms are included in the primary interference. It

-as found that including the source terms in the additional interference

alculation greatly overestimated theireffect because of a known limita-

tion Df slender-body theory.

The additional interference method was used to calculate the increment

oý ncrmal force and pitching moment due to adding a pylon to a wing-fuselage

coambination. For the case considered, the increments were very small.

This may not be true for side force and yawing moment. For the particular

case for which comparisons were made, it was found that there was a

sicrificant change in the experimental load distribution near the pylon

when it was added although the resulting effect on normal force and pitching

moment was small. The change in the load distribution is attributed to

pylon thickness effects. Even though in the case studied the pylon was

excessively thick, the inclusion of a pylon thickness model in the primary

interference may be desirable.

For a cluster of stores grouped on a TER rack under the wing of a

wir ,-fuselage combination, it was found that the predominant interference

effect was due to the volumes of the other stores and the incremental

luad distribution due to adding the other stores could be predicted quite

well by r-pEesenti1g their volumes with a distribution of three-dimensional

sou.-cC. ? , c':arunation of experimental MER data indicates the same to be

true.
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I

Comparisons made with data obtained on a single store with tail fins

under the wing of a wing-fuselage combination indicates that it may be

necessary to include body-vortex effects in estimating the tail effective.-
ness. At high angles of attack, the store with an empennage exhibited the

characteristic lift and moment curves associated with the loss of tail

effectiveness.

The location of flow separation from a store with boattail is also
important at high angles of attack. Methods exist fo- estimating this

location for a store in a uniform flow. A means of estimating separation

in a nonuniform flow should be developed.

The one trajectory comparison presented shows that the trajectory
4s well predicted only if pitch damping is included. The method of
accounting for pitch damping is thus considered satisfactory and is

readily extended to include yaw and roll damping.
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TABLE I

BODY-OF-REVOLUTION STORE COORDINATES

Station, Radius,
inches inches

0 0

0.112 0.067

0.212 0.108

0.312 0.139

0.412 0.161

0.512 0.180

0.612 0.195

0.712 0.209

0.812 0.222

0.912 0.232

1.012 0.241

1.1i]2 0.248

!.212 0.254

1.312 0.258

1.412 0.262

1.512 0.265

1.612 0.266

1.712 0.267

1.812 0.267

1.912 0.268

2.312 0.268

2.412 0.266

2.512 0.264

2.612 0.2.9

2.712 0.254

2.812 f.248

2.912 0.241

3.012 0.234

3.173 0,222

3.812 0.175

4.430 0.175
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Figure 1.- Coordinate system for axisymuetric body.
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Fuselage Ordinates
X/If r/If

0 0

0.0328 0.0091
0.0657 0.0171
0.0986 0.0241

13.48 0.1315 0.0300
0.1643 0.0350
0.1972 0.0390
0.2301 0.0421
0.2629 0.0443
0.2958 0.0453
0.3200 0.0457
0.7534 0.0457

S0.7669 0.0454
/ '0.7998 0.0438

0.8326 0.0418
0.8655 0.0395

45 0 0.8984 0.0372
0.9313 0.0349

/0.9641 0.0326
1.0000 0.030236.51 92

/ -%Quarter chord

9 3

2.77

_..t_

12.00 Wing Airfoil
Section

NACA 65A006

.3.34

All dimensions
in inches

Figure 2.- Wing-fuselage combination used in reference 1.
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4.18

6. 3'75

Quarter
chord

All dimensions-13
in inches

0,75D -4.00

(a) Store location.
Figure 3.- Single store in the presence of the wing-fuselage

combination of reference 1.
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and flow velocities.
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ta) Local angle of attack.
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(c) Composite velocity diagram.

Figure 10.- Definitions of local angle of attack
and sidewash angle,
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0.08L
00 Number of Vortices

Chordwise Spanwise

- 10 9

--004-______ -.--- 4 90.04419

ca = 6

> 0 .- z/C - -0.1

- v ,-0.5

-0.04

-0.08

-0.12

-0.4 0 0.4 0.8 1.2

x/c

(a) Upwash perturbation velocity.

Figure 11.- Perturbation velocities due to angle of attack
10 percent cf local chord beneath wing of

example wing-body combination.
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S(b) Sidewash perturbation velocity.

Figure l.- C4 ,cluded.
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0.04

0

-0.04

-0.08

-0.12

-0.16
-0.4 0 0.4 0.8 1.2
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(a) Upwash perturbation velocity.

SF-i-e 12.- Perturbation velocities due to angle of attack
percent of the local ihord beneath wing of example

wing-body combination.
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(b) sidewash perturbation velocity.

Figure 12.- Concluded.
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Calculations

Fuselage-
inducedUw velocities

-0.2° Included
-- -0.20 Excluded

0 0 Included

Data, (ref. 5)
Z/c _ _

o -0.07
o -0.17
< -.0.27

000

2

00
-- _ 00 _ _

. '--'" - "= - "- - -

S-2

-4

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2

x/c

(a) Local angle of attack.

Figure 13.- Comparison between calculated and experimental
local angle of attack and sidewash angle under the

rrmid-semispan of wing-body configuration
of figure 9; a - -0.20.
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Fuselage-
induced

•OW velocities

S-0.20 Included
.. -0.20 Excluded

00 Included

Data, (ref. 5)

z/c
-2 . 0 -0.07

~0 0 0 -0.17
0O 0 0 -0.27

00 
-0

-2 -

0 OC0 00 0

00

4 00

2

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2
S~x/c

(b) Sidewash angle.

Figure 13.- Concluded.
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Calculations

-- Calculated wing
thickness effects used

Experimental wing
thickness effects used

Data, (ref. 5)

2 .w

-0.2'

•-4.3
-2 _ __d _ _ _

V -8

-10

.4.2--00

-1.6 --1.2 -0,8 -0.4 0 0,4 0.8 1.2

x/c

(a) Local angle of attack with aw = -0.2° and -4.30.

Figure 14.- Comparison between calculated and experimental
local angle of attack and sidewash angle under wing-
body configuration of figure 9 at the mid-semispan

17 percent of the local chord below the wing
for various angles of attack.
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-- Calculated wing
thickness effects used

Experimenta'. wing
thickness effects used

20

18 ____ _ - Data, (ref 5)
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-12 I
Calculations Data, (ref. 5)

-10 Calculated wing _tw-I0--thickness effects 07-

used 0 0 12.3

--- Experimental wing 0 (. 20
thickness effects O\ -0.20•=:• ~-8 -- used -- 4°

-6

-4 _ _._

-2 ________

4 __

Sd 0angl

r2• 4

Si-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2
i • x/c

"I " i (c) Sidewash angle.

Figure 14.- Concluded.
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Data (ref. 5)
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10 - Calc-,lation

00,

6

QO 0-

2

001

2

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2

x/c

(a) Local angle of attack.

, Figure 15.- Comparison betwen calculated and experimental
local angle of attack and sidewash angle under wing-
body confiquration of figure 9 at the mid-semispan

at an angle of attack of 6.10.
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a Data-, (ref. 5)
-10 z/c

o -0.07o -0.17
-8 c -0.27,•2 -8

-- Calculation
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0 00

000-

0
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0 0
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(b) Sidewash angle.

Figure 15.- Concluded.
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(a) Local angle of attack.

Figure 16.- Comparison between calculated and experiment~al
local angle of attack and sidewash angle under wing-body configuration of figre 9 at 17 percent of

the local chord below the wing at an angle

of attack of 6.10.
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- Calculation (0 Data, (ref. 5)
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S-0.50
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-4 ___
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00
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"(b) Sidewash angle.

Figure 16.- Concluded.
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000

Data, (ref. 5)
-2z/amax

o -1.16
O -1.55

_____ '$ -2.21

-- Calculation

-6

0 '

II

-41____ ____

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6

X/c

(a) a. =-0.2°.

Figure 17.- Comparison between calculated and experimental
local angle of attack under the fuselage centerline of

wing-body configuration of figure 9 for vdrious
distances below the fuselage.
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-- Calculation Data, (ref. 5)

z/amax

O-1. 16
- - -1.55S-2.21

2 I

x/c
(b) cz. = 6.10.

Figu~re 17.- Concluded.
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1.081,,

0 Data (ref. 1, Vol. IV)

Theory, aw M 00
Theor•y; . 1.250

1.04

U 0

0.04

S00

-.

0.04

-0.04

-0.04

0 0.2 0.4 0.6 0.8 1.0

(x/) s

(a) ae =00.

Figure 18.- Comparison btzween calculated and experimental
velocity field at the 1/3 semispan of the left wing

panel of wing-body configuration of figure 1;
M. 0.25, z/c = -0.30.
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Figure 18.- Co~ncluded.
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!• •lvelocity field at the 1,'3 semispan of the left winq
pan~el of wing-body confi'7uration of figure 1;I- 0. 7, 0/c-0.30.
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Figure 19.- Concluded.
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Figure 20.- TER grouping of stores in the presence of thewing-fuselage combination of reference 1.
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Figure 21.- Comparison between calculated and experimental
velocity increments due ?o eddition of two shoulder

stores to TER rack; M, - 0.25,
y/s = -0.333, z/c - -0.40.
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E.Jgure 21.- Concluded.
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Figure 22.- Coordinate system fixed in ejected store.
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Figure 23.- Axis systems used in mutual
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2.0

0 Data (ref. 1, Vol. III)

Theory, no store-induced
1.6 wing camber

--- Theory, with store-induced
wing camber

1.2 I
0.8

dCN

dx S

-0.4

i -0.80 0.1 0.2 0.3 0.4 0.5 0.6

-4ft.

(a) = a 0, aw 1.250"

Figure 28.- Primary interference normal force distribution
on a single store below the left wing panel of a wing-

fuselage combination; M. = 0.25,
y/s = -0.333, z/c = -0.30.
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O Data (ref. 1, Vol. III)

Theory, no store-induced
1.6 wing camber

Theory, with store-induced
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(b) a = 6°, w = 6.750.

Figure 28.- Concluded.
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2.0 ____I
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Primary interference - no

1.6 store-induced wing ca-mber

Primary interference plus
additional interference
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dx
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0X1, ft

(a) ap = 00, aw - 1.25°.

Figure 29.- Effect of additional interference on normal-
force distribution on a single tore below the left

wing panel of a wing-fuselage combiration;
=M, 0.25, y/s -0,333, z/c 0 -0.30.
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Figure 29.- Concluded.
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xs, ft.

(a) ap = 00, a, = 0.960.

Figure 30.- Primary interference normal-force distribution
on a single store below the left wing panel of a wing-

fuselage combination; M. 0.70,
y/s = -0.333, z/c = -0.30.
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Figure 30.- Concluded.
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-0. -- Primary interference

theory with store-
induced wing camber

2 4 6 8 10
ap, deg.

(a) M = 0.25.

Figure 31.- Primary interference normal force and
pitching moment on a single stoLe below the

left wing panel of a wing-fuselage
combination; y/s - -0.333,

z/c - -0.30.
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Figure 31.- Concluded.

,135



0.12
0.25 

J

2.00.4

All dimensions
in inches

Upper surface
contoured to
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Pylon
%

For wing pylons, pylon centerline located at
40% wing chord.

For fuselage pylon, pylon centerline located
19.43 inches aft of fuselage nose.

Figure 32.- Details of pylons used in experimental
investigation of reference 1.
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Figure 33.- Incremental loading on single store at 1/3 semnspan
location caused by addition of pylon tco wing-fuselage

combination; M = 0.25, z/c = -0.30.
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Figure 33.- Concluded.
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Figure 34.- Swept-wing model of NACA RM L54BI8 (ref. 15).
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Figure -*6.- normal force and pitching mom.ent

on store without tail fins.
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Figure 36.- Continued.
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Figure 38.- Incremental loading on bottom store on TER rack at
1/3 semispan caused by addition of two side stores;

M = 0.25, z/c = -0.40.
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Fi-gure 39.- Incremental loading on store no. 2 on TER rack at
1/3 ,,ri-span caused by addition of store no. 3;

MM = 0.25, z/c = -0.333.
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APPENDIX I

INTEGRATION OF THE LOADING EQUATION

rr.s integration cf the loading equation, equation (86), will be

carried out in this appendix. It will be done in two steps. The first
step will be to integrate the first two integrals to obtain the load
distribution on the store alone in the nonuniform flow field. This

-* constitutes the primary interference. Following this the last five
integrals will be integrated to determine the load distribution due to

the additional interference between the wing, pylon, and store.

To obtain the store-alone pressure coefficient, we must evaluate u
Vs, and ws from equations (77) arnd (78). Since on the store

iea - ae (I-1)

equation (78) yields

vs -W sin 20 -V cos 2e + v -cos

(1-2)

9 ws w = Wc•s2 - V sin 2e- V. Ta e
oes

To obtain us wG need the pertuz'aation potential , which can be
obtained from equation (77). Ordinarily, we can just take the derivative

Sof the pezý*urbation potential to obtain us when the components of the

free-stream potential V and W are not functions oi xsI However, in
this case a component of us is associated with the crossflow potentials

Vy. and Wzs. Accordingly,

us o(s + Vys + WZs) (1-3)

Since qKs is the real part of W (a) we find at some field point P
where

ieyG re (1-4)P
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that equations (77) and (1-3) give

V d
us d (Wa) + C OS (Va2 ) + log r - (a2 )

r dx-- r dx S- dx2
s

dV dW
+ s dx s dx-s s

On the store where r = a, e = 8, this becomes

"(d 
V lg d 2 a2  (1-6)us 2 sin ed (a) + 2 cos 0 -- (Va) +-•-loga -dx

d xS 2Sx

From equations (75), (76), and (83)

u=k- ( (1-7)

Since

a w

(V-8iiv
the perturbation velocity us is

U d Wa + cos d Va 1dx0, 2 sin V - + dx2 V/ 2 dx 2
s

+ - ( cos 2'ý - 4 sin 2(3

+da COS + sin (1-9)
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Thus, the first integral in equation (86) is

S- sin de = 2r d_ (Wa (+-10)f dxs 0 dxsV
0

The second integral in equation (86) involves the square terms

\2 ++ /d\ 2 - 2 da 1K s V sin e
\V0  V~ V ý) -dxs dx V V0

2 )(1-l)

The second integral is thus

1s C-s-] sin & de = da (1-12)
0

The store noriaal force without the vortex systemt is the sum of the.5e two
integrals

dNs d Wa

dx s sdx v (-

It is of interest that the foregoing expression can be interpreted Ln
terms of normal forces associated with apparent mass and buoyancy. Let
us rewrite equation (1-13) as

S d d6x= V ('rpaeW) + V (irpa ) (I-.14)

The additional apparent mass of the store per unit length is

S.• ~~m - 7pa2 Z-5

Sso that equation (1-34) can be rewritten

~dNs d d+ V,,yra 2 dxW

dx 5 t (mW; +x
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The first term has a clear momentum interpretation. The second term isSfa biovant force as will now be shown. For irrotational plane flow, we

have'

L ( 1- 1 7 )

n = direction normal to streamline

VL = velocity along streamline

R = radius of curvature of streamline

The buoyant force dN s/dxs per unit length is

dN s ir/

dx- = 2 (p, -p)a sin e de (1-18)

0

wherein

P- Pu = 2 a sine (1-19)

The radius of curvature of the flow sketched below is

i -V (1-20)
R dx

5

VL W

/ R

'Niine-Thcson, 1. Mm.: Theoretical Hydrodynamics. Second ed., The
MacM3_ian Company, New York, 1950.
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Thus,

S•--dNs-, r/2

- 4a2 _P. sin2 e dedx n

= 7ra 2 L -21

It is seen that except for a negligible cosine term, the buoyant normal
force per unit length is the same as the last tecm of equation (1-16).

The normal-force disttibution calculated in accordance with equation-,

(1-16) was the basis of the store force calculations in sections f.1 and

6.2. The buoyant force was calculated there from actual pressure calcula-
tions rather than the simple expression in equation (1-16).

The remaining terms in equation (86), the third through seventh
integrals, are the additional interference and will now be evaluated Ž.n

terms of the strengths ri of the external vortices which remain to be

Sdetermined.

In evaluating the third through sixth integrals of equation (R6), *,C
note that they are linear sums over the external vortices so that we can,

carry out the integration for one external vortex r1  and sum over 'h(=

external vortices. For one external vortex and its image system, the
complete potential is from equation (79)

W1 (a) = - log (a - 1) - log + log 01

where a, the field point, is

io
a e (i-2•.

and oi, the vortex position, is

"01 r e
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Tne velocities v 1  ard w1  on the store are given by

dW( (a) 5
V7 - iI, do =(=a

from which we find

r sinO [e a 2 - r] 2-6

v 1 + 1

(-26)

F• Cos [ a2_ rl]
W , 2 -, a [1

wherein

Ri= a2 + r 2 - 2ar 1 cos (@ - 0) (1-27)
11

To obtain u1  on the store, we must extract Di from equation (1-22).

01 = R.P. W1 (a)

or

=- ~arg (a - 0) - arg (a - + arg a (1-28)

Carrying out the differentiation in the manner shown in reference 13,

we find

s1 dF'1 [tan-' (a sin - r, sin 01)
u27d a cos Csr co,•=as

(a sin -- a2 sin

tan + a1

cos s9 c
r!

(eq. (1-29) cont. on next page)
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dyv dz

(a sine V) -- (a cos e-y) Vi

2r Rr
2w(DL

a sin s Z1)30)2- A2 dxki; 2

II rco RpJ

S(a Co i v "a
r 2O -- "Yvdxs ýr V

where the vortex coordinates are

• zv,, r sin•i 1(1-30)

Yv r. LCos 01

Thre third integral is evaluated by performing the integration using

equition (1-29) in the manner shown in refe:ence 13 to obtain

N 27rfui

NN

"r -

2 :;' vs~ -- [a3Co (-i -N'_ (.iiL.9) co da) 1-1=aV i dx2 )(-3

Th•e fourth, fifth, and sixth inLegrals are evaluated using equations

(I-2), (1-8), and (1-26) and yield (ref. 13)

N 
/a 

-
I

i=1 o

7r 2..Ai \ cos 2,. + sin 2i (1-32)

i-jl\r/ (1
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ae COS 2,•i + iL sin 2 •ij (1-33)

N 21T21= N r( r2
• / v. i(vi d (wG wra sin ( si (i

'T co 0+ sn2 (1-33)

In evaluatincq the seventh intogr~l of eqtuation (86) we can perform
the 2.ntegration for a pair of external vortices P1  3fnd F• and then sum
over all pairs. In summing over i .nd j as specified n eriuation (86),

we are summing over the nondiagonal terms of the ij metrix. •f i and

j are interchanged, the value of the integral is unchanged. Accordingly,

we can sum over onl~y half of the nondiagonal Lerms and double th-e sun,.
iPerforming the integration in tho manner o~f reference 13, we find

N 2N [(Vf, Vi\v2 NW 2,W"

E sinind0

11 jP.i ~l

37ý+ + W 3' (1-34)7 IT0•Yo sn3d6 2aT`V)2

7•a, where

_ari 1  - si•n ,aj
n r )[(a + ret)rj sin.@:- (a rs)g s.nN %8 wca.]

we• + 2rirj sin (o j the (r -ago rj cos of - ij- atri. co i i and

2. -) + a) si2e.

V V0



and 7\ in the above expression is

X (rq + r?)(a 4 + rr4) - 2(a 2 + rq) (a2 + r?)rirj cos (i -0j)
1 ) 1) 3 11 2

+ 4a 2 rirj cos 2 (0, - ) (1-37)

The five integrals just evaluated determine the store normal force
per unit length due to the voctex system. That is,

pV4a x 2 r ( 1 Ire ar _V

rr

( a di 2

N--N+ N27 a-F2• [V cos 20i + -K sin 20i]

+ • r.
h2er total nr- a u l g) sin b6 y

N-1

Z2-2v I r.i sin Oi + r sin 0j + •(a, ri rji i,0j)

j=1 i=j+l

•.•i" " 2=aV]k2;V.](1-38)

•b iThe total normal force per unit length given by equation (86) is the

sum of the two components given by equations (1-13) and (1-38) That is,

1I--i--i r (1-39)
-Va dX5  W2..d2s dx17

171



The first term on the right-hand side is the normal force acting on the
store due to a known nonuniform flow field and is evaluated using the

methods of sections 6.1 through 6.3. The remaining term is the force due

to mutual interference between the wing, pylon, and store. To evaluate
this term the strengths of the vortices r'i must be determined. This

determination is described in Appendix II.
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APPENDIX Ii

CALCULATION OF VORTEX STRENGTHS

II-1. INTRODUCTION

The determination of the vortex strengths is simple in principle, but

is complicated from the bookkeeping point of vi, ow. Vortices are placei at

selected locations on the wing and pylon together with their image systems

within the store. The velocities induced by the vortex system normal toS the wing and pylon at selected control points a.Le calculated in the form

of a linear combination of the vortex strengths. Theie normal induced

velocities are then equated to the normal velocities at these points
which are to be cancelled, thereby giving enough equations to determine

the vortex strengths. The velocities to be cancelled, which are consi-

dered the boLndary conditions, depend on the configuration under conm;idera-

tion.

11-2. VORTEX NOTATION, POSITIONS, AND CONTROL POINTS

The general array of vortices on wing and pylon is as shown in the
sketch below. The left and right wing panels may be of unequal lenath.

On the right wing pz'nel we will place equally spaced voztices of 9tr~ngt-'

K>, 1 A , p; on the left wing panel we place equally spaced vortic~s

1 ý. v • n; and on the pylon vortices y, 1 _ - i,. The contr-A
points are located midway between the vortices. Positive circulatiu, z)
the various vortices ! -zs shown.

yin 1,2 ,...,n 12..,

r n r4 r r r r r 0 K K K K K
n n-.LV 4 3 2 1X 0 2o

-t +S

h - hp
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The vortex centers are thus located as follows with respect to the store

a-- i s:

Left panel: I1 V = 1,2,...,n G= - t+ ih
V n

Right panel: Ki = 1,2,...,p a. = s%+ ih (11-1)
p

Pylon: ¶ = 1, 2 ,...,m a= 0 + i h m
Vp

No vortex is placed at the bottom of the pylon because it would be

iaentically cancelled by its image in the store attached position.

Each vortex as sketched above has a trailing leg of opposite sign
at the pylon-wing juncture. Accordingly,

ro= - LEr ,-K% -L (11-2)

The control points are located as follows:

Left panel: t = - (2g - 1) + ih; g =1,2,...,n9 g 2n

Right panel: oj = 2 (2j - 1) + ih; j = 1, 2 ,...,p (11-3)

• Py!on: i'k = - (2k - ) ; k = 1,-2,. m

We rust satisfy boundary conditions on the left panel, the right

pancl, and the pylon. Let us define the following vortex-induced

velocities:

"4L(I.) normal velocity on left panel induced by r vortex
99 " " " ' " K"' L (K)K

WL(•

W !( ) normal velocity oi right panel induced by r vortex

7R(K)



W-T -- ý

vP() rmal velocity on pylon induced by r vortex
IM Vi el ) II I, I II tO

v PIK) K

vP (-Y).... .. . ,

Vortex velocities inclade those inducel by their images including the

center vortex.

At each control pcint, we will obtain equations of the following
types which satisfy the condition of no flow through the control point.

Left panel control points:

• L (r V) + wL W(K.) + WL() + WL(g) = 0 (I4

Right panel control points7

+ + + W( V + Vp(j) = 0 (II-5)

v +

In these equations WL(g)' WR(j), and VP(k) are interference velocities

at the control points to be cancelled by the vortex system.

11-3. DETERMINATION OF VORTEX-INDUCED VELOCITIES

The expressions for the vortex-induced velocities will now be deter-

mined. The derivation of only one of the nine will be presented, since

they all proceed in a similar manner. The derivation of all nine is

carried out in reference 13.

Let us consider the velocity induced on a right wing panel control

point by a right wing panel vortex plus its images.
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/,

/

/h

a2Owl ae N

' direction of positive K, is shown in the above sketch. The loca-
tion of the external vortex is u N, For the external vortex plus its

images, the complex potential is

WK.) = [og(a -c:) -. log - + log a (11-7)

from which we obtain

dW~ K,1"

(vdK" iK.\ r 1 1 + (11-8)dc Kv\ 27-c-ok a2

Let

S= y + ih (11-9)

and for the wing control point

a = y + ih (II-10)

3.76



Then the normal velocity induced at a wing control point by a vortex on
the right wing panel is

Ky-X (yý : h2)[yy h2) - yýa2
WX =N - - + h2 ) - a2y]2 i- h.[2 +h 2

-a]+J

(I--lA)

For a specific vortex equation (II,-l) gives

sN
y(= (I-12)

p

and for a specific right panel control point (eq. (11-3))

s

y p (2j - 1) (11-13)

Therefore, the velocity induced by a right panel vortex on a right panel

control point is

K_ f_ __ (2j -1)
i WR(K•) = '•% ~1 (j 2) s2 (2j -1)2 + h2

4p
2

(2j -1 + h2) -a2, + [h2][ýa N2 + h 2 - aS• 2p -i +h -pLP

(11-14)
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In a similar manner the other eight vortex-indaced velocities are

found to3 be

K ) -l - 2 n( 2 g - 1)
L(K) 2- (2g - 1) + p- (2a - 1)' + h2T p 4n2

n+ p (2g - 1) + h

(2 2 a2n ) h2sp2h
-L (g' 2+ h2 ~ (2) _A a-ý ;+ h 2)js"+ h_2 a2

(11-15)

2p l n (2j + h)
VT t sWR(v) 2j-1i) +V 1 2 )2 + h

- (2
4p2

(2j +h

(2j -, 1) + h + a + h2 
2N 22 

+ J a)PSTn n n ?

S~(11-16)

F 
t (2g -1)

'~ ( V_ 2n -iV tt

4n 2

( nC n2 2• +•I~ V2 + h:)[. . (2g- 1) v + h2~+ V

(2g - 1) V + h2 + V + il [-. v ,h a

(11-17)
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_ ¶~(2 i1)
WR (ly) -2 2/

[h (hp - ~2] + s-) 2 (2j 1)•2 (hp -

1 -Ji (7.I-18)

(2j 1)2 + h2

(2g -i)-) (2g -1)

WL, C , 2r t 2 (()2g 1) 2 1 - 2

(hp

t
2  } (II-19)

- (2g - ) + h
4n 2

K h (2k k- i

pi 2mj p 1

v+ (ha +.( 2 [h~ -h (2k -i)]) 2

2 h[h~ (2k -1)] }2+ -~ x2 h (2 1)]

(11-20)
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rv h - (2k 1) - h 1
Vpr) -- |t2 h -2 h f ] h - (2k- 1)

+. [h h p 2m

-( + I tVt__ + h
ha - p - 2m) ( n2

Lk + ( II-21)
a2 h-(h p - -• + ( p - - T _+

•• [1 +[1

v +1P ( - ) 7 ( 2 k - 1)]-- m ( h -

+ k - p (k (11-22)

a2 - hp - (hp - +-
p m p m

1!-4. EQUATIONS FOR VORTEX STRENGTHS

In writing the equations for the vortex strengths, we start first

v:i.t. ecuation (11-5) for the right panel. The value of W[) is C V(
- n:ation (11-16), wR(K) by equation (1!-14), and W by e.,u;: AC, I

R()R ( by)').a-
!1-1S). In writing these equations, we will alo cons.ider a trailing

eg in the wing-pylon 3uncture having the opposite 3ign fro-a that of

,-he other tra).ling leg. As a consequence, the vortices at Lhe center of

uh,. store will be equal and opposite and thus cancl]. The induced --eoocty

Juc to the trailing leg at the wing-pylon 3uncture can be obtained fr-om

that for the other trailing leg by setting ', v, or T equal to zero

(as the case may be) and reversing the sign of the result. Thus for

control points on the right panel we obtain the following p equations.
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n __ 1 1 "r (2j - 1)h 2

"2r s (2j 1) ) 2 h2 +( h2)2V = 1 s• (2 j 1) + t v 2 p (2 j h ) (a h

4p2

e2 V2 - (2j - 1), nv + h + t a 2v}

(2j -) 2+ h2 + * a2v] + h tL h a 1

K:I ~ (i _ 1 + ~ 2~)
2

__P K -- -(2j - 1) 2 h

1)r 2 2ns 2p 4p2 (2j - 1) h 2 + (a - h2)2

(a? 2 + h 2) (2j -1) (/ s 2+ h -' a2),

[S - S2 h2) s a 2 2+? 2(A

s (2j - 1) ,. +s2 + h 2 
)2 + h - a

(w2~ (j 1) 11

T= 27 ((s) (2j 1)2 + + h - h)2 A- (2j - 1)

h 2
- )2 + s (2j - 1)h

i [hG - L)..- a2]2 + (.P) 2 (2J(- )(hp - --

= -WR(j) ; j 1 , 2 ,...,p (11-23)
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WI

The equations for the n left panel control points are obtained from
equation (11-4) with wL(r) from equation (11-17), WL(K) from equation
(11-i5), and wL(,Y) from equation (11-19). There results

Z2T( t~ 1 -. (2g - 1)h 2

2n (12g-li) t-- 12g - 1)2 h2 + (a2 -h11)2
4n

mr.+ h2 [- (2g -1) + h h) + av]

h2) Va]t h2 [22• h 2]

- n + -++ h

r tt 2
1 - -2g1-+i)n+(2g --l*h

V= i (v2g-) + -L2 t~. (2g -1) 2
a2 112 2

p 2n t
2  (2g -1) h' + (

4na

v+ h) [ 2 1) + h + 1) 2))t•v2a22

+ (2g -s1) 1 + h 2 + -h + h2

i ~m l

.L\ 1 1 +2

S•=l• (2g -1) + + h - hp) 2 (2g 2)2

~h 2

a(h - a \)2 + (2g - i)h+

n (hp -

[hm y_ -- )21 +g -. }2 1))~

2n-wL(g) ; g=1,21,. n (11-24)
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The equations for the m pylon control points are obtained from
equation (11-6) with vP(r) from equation (11-24), vP(K) from equation

(11-20), and vp () from equation (11-22).

n rZ (2k- 1) 1

h[ a2. h[h m(2k -1)]
ha p 2m mk•n

_ -_h k + _/t2v2 h2)

+ p m

. Kf h -h- (2k-i) 1

2-+ h 2 ( h(2k-1)X1+ h L(k 1)122. 2m

[h

a 2 
-h - (2k -

h ah 2m

ha2 (h j2km_• s+w) +- h2)

a2 h(h pk + _)]2 + s2 hp h i -+ 2

I a201 - 1 h h

m2r¢ 2 _ h
m _ (2k 1) hp - 2m (2k - 1) - h a -h -L (2k

h p- 2-m p 2mos

h - -

+ P m
aa 2 (hp l-- hp -ik +-Lm

= -VP(k) ; k 1,2,...,m (11-25)
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These equations, equations (11-23), (11-24), and (11-25), are a sDt

of simultaneous linear algebraic equations which can be solved for the

unknown circulations once the boundary conditions WL(g), WR(j), and

vP(k) are specified,, These circulations can then be used in the loading

equation, equation (89), to determine the normal force due to the vortex

system. The sign convention on the circulations so obtained is consistent

with that of equation (89).
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